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building certifications in Europe. The analysis is preliminary because it does not include all the

major green building certification schemas in Europe; just BREEAM and LEED. The main aim of
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demonstrate that this process can be analyzed at different spatial scales from countries to NUTS3

regions to municipalities.
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The Diffusion of Green Building Certifications
in Europe - A preliminary descriptive analysis

Gunther Maier, Katarzyna Reyman, and Michał Głuszak

1 Introduction

Our motivation for writing this paper is the growing concern and global action to mitigate
climate change and the fact that the building sector is responsible for 35% of the EU’s energy-
related emissions in 2021 and for over 35% of the EU’s total waste generation. The green
buildings movement aims to reduce the negative impact of the buildings sector on the envi-
ronment. Eco-buildings use resources effectively, create healthy and comfortable living envi-
ronment, and live in harmony with the environment (Shi and Liu 2019). Green buildings play
an important role in environmental protection and resource conservation (Wang et al. 2018).
As sustainable buildings provide economic, environmental and socio-economic benefits, it is
important to understand what factors influence their adoption, how they are diffused across
cities, regions and countries, and what the future trends of their dissemination may be.

This exploratory analysis of the spatio-temporal diffusion of office eco-buildings in Europe is
a step towards a larger project that will continue with the full data and in addition address
the key issues outlined above.

This paper uses data from BREEAM (Building Research Establishment Environmental Assess-
ment Methodology) and LEED (Leadership in Energy and Environmental Design) certificates
of office buildings in 2006-24 in 33 European countries. The green building certificate is the
proxy for its sustainability. The data come from the websites of the certification organisations1.
We merged data on certificates with data on NUTS3 (source: Eurostat) using the shapefile on
NUTS3 boundaries. In addition, we applied data on construction workers in 2018 (Eurostat)
as a proxy for the size of the construction sector in NUTS3 regions. To explore the data, we
employed descriptive statistics, Theil’s concentration index, spatial analysis (Moran’s I statis-
tics and local Moran’s I) and temporal centres of gravities. To investigate the factors that
influence the spatial distribution of eco-buildings across countries, we constructed count mod-
els and cross-sectional analysis. This preliminary analysis uses partial data on certificates of
green buildings. To get the full picture, data on HQE (Haute Qualité Environnementale) and

1https://tools.breeam.com/projects/explore/buildings.jsp and https://www.usgbc.org/projects.
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DGNB (Deutsche Gesellschaft für Nachhaltiges Bauen) certificates are needed. We therefore
refrain from interpreting the analyses, apart from descriptive statistics.

With this analysis, we intend to demonstrate that this spatio-temporal analysis is feasible with
the data currently used. The use of Quarto software allows the results to be shared, reproduced
and discussed with a scientific audience. Since we are working on a project proposal at the
moment, we currently do not provide access to the green building data we have collected.
This will be changed as soon as possible. However, the remaining analytical workflow is fully
transparent in this publication.

In our exploratory analysis we proceeded as follows: in the first step, we performed descriptive
statistics by country and by year for BREEAM and LEED certificates for the number and stock
of observations (green buildings). We estimated the average annual increase in the number
of green building certificates. We examined the distribution of certificates across countries
and per construction worker. We calculated the Theil concentration index per country and
per year. Secondly, we performed descriptive statistics on the merged data at NUTS3 level.
We measured spatial autocorrelation using Moran’s I statistics and local Moran’s I at the
level of European regions. By calculating the centroid of all green buildings and estimating
growth trajectories, we added the time dimension to the analysis. We then used regression
analysis to examine the growth process of certified building development. We fitted three
types of model fit curves (exponential, a non-linear cubic, a non-linear logistic) to the number
and stock of green buildings for all European countries and for each country separately. We
assume that the number of certified green buildings over time follows a growth process that
eventually reaches saturation. We checked whether the fitted model curve resembles the s-
shaped innovation curve. We then run regression models with the number of green buildings
as a dependent variable and countries, countries and year, and interactions. Finally, a cross-
sectional analysis with the number of construction workers in each country as a proxy for the
size of the construction sector in a NUTS region.

2 Reading all the data

We need the packages tidyverse, eurostat, gmodels, forcats, sf, spdep, tmap, and gt for
these operations. Make sure you have installed them. In the following code chunk we load
these packages.

library(tidyverse)
library(eurostat)
library(gmodels)
library(forcats)
library(sf)
library(spdep)
library(tmap)
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library(ggplot2)
library(plotly)

In the next sections, we load all the data that we need for our analysis.

2.1 Reading the Green Building data.

The first step is to read the green building data. We construct a URL with the respective
query string to extract the correct observations from the database. We then feed the encoded
version of the URL to function read.delim(), which reads directly from the internet.

Since we are currently working on a project proposal, this step is currently suppressed in the
output. We will make it transparently available as soon as possible so that the whole analysis
will be perfectly reproducable.

This dataframe has 29864 observations and 10 variables. Since the year 2024 is incomplete,
we filter only observations with a certification date before January 1st 2024.

Each observation represents one green building certification. Note that these are flow numbers
- awarded certifications. They are not the stock of certified green buildings.

2.2 Reading Construction Employment data from Eurostat

See https://ropengov.github.io/eurostat/articles/eurostat_tutorial.html for information on
downloading data from Eurostat into R. This section uses the R package eurostat which is
described in the mentioned tutorial.

The Eurostat table_id sbs_r_nuts06_r2 is for employment data of all sectors in all NUTS2
regions in all years 2008 to 2020.

emp_eurostat_id = "sbs_r_nuts06_r2"

We get the full dataset from Eurostat. To get cross-sectional information about employment
in the construction sector for as many countries as possible, we filter the data by the following
criteria

• the construction sector
• year: 2018 (last year with UK information)
• full countries
• persons employed
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We rename the column geo to country to ease later merging. We also rename “UK” to “GB”
as it is used in the green building dataset.

constructionEmploymentByCountry <- get_eurostat(emp_eurostat_id,
time_format = "num", stringsAsFactors = TRUE) %>%

filter(nace_r2 == "F", indic_sb == "V16110", str_length(geo) == 2,
TIME_PERIOD == 2018) %>%

rename(country = geo) %>%
mutate(country = case_match(country, "UK" ~ "GB", .default = country))

2.3 Reading Population data from Eurostat

In a similar way we read population data for all countries from Eurostat. The Eurostat
table_id demo_r_pjangrp3 is for population data in all NUTS3 regions in all years 2008 to
2020. We select the year 2019, the last year with data for the UK. Again, we use the R package
eurostat.

eurostat_id = "demo_r_pjangrp3"
#head(search_eurostat(eurostat_id, column = "code"))

Population <- get_eurostat(eurostat_id,
time_format = "num", stringsAsFactors = TRUE) %>%

filter(str_length(geo) == 5,
TIME_PERIOD == 2019,
age == "TOTAL",
sex == "T")

We aggregate the population from the NUTS3 level to countries and store the results in data-
frame PopulationByCountry. We will use this data-frame later.

PopulationByCountry <- Population %>%
group_by(country = str_sub(geo, 1, 2)) %>%
summarize(pop = sum(values)) %>%
mutate(country = case_match(country, "UK" ~ "GB", .default = country)) %>%
mutate(country = case_match(country, "EL" ~ "GR", .default = country))

2.4 Reading the NUTS codes and names

The following code chunk reads the shapefile with the NUTS3 boundaries and extracts the
NUTS3 codes and names. It sorts the data-frame by NUTS3 codes. This information is
essential for mapping and for the spatial analysis.
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The shapefile is read from the local drive. We downloaded this file using the web-tool https:
//ec.europa.eu/eurostat/web/gisco/geodata/statistical-units/territorial-units-statistics.

nuts3 <- st_read("NUTS_RG_01M_2016_3857.shp")
nuts3_sf <- st_as_sf(nuts3, coords = c("longitude", "latitude"), crs = 4326)
nuts3_sf <- st_transform(nuts3_sf, crs= 4326)
nuts3_sf <- nuts3_sf %>%

filter(nchar(NUTS_ID) >= 5)

nuts3 <- as_tibble(nuts3 %>%
filter(nchar(NUTS_ID) >= 5))

nuts3 <- select(nuts3, "NUTS_ID", "NAME_LATN")
nuts3 <- nuts3[order(nuts3$NUTS_ID),]

2.5 Some useful data structures

For later use we also generate vectors of the years and of the country codes as well as a list of
the corresponding country names.

years <- sort(unique(green$CertYear))
countries <- sort(unique(green$country))
countryNames <- list(

"AT" = "Austria", "BE" = "Belgium", "BG" = "Bulgaria", "CH" = "Switzerland",
"CY" = "Cyprus", "CZ" = "Czech Republic", "DE" = "Germany", "DK" = "Denmark",
"EE" = "Estonia", "ES" = "Spain", "FI" = "Finland", "FR" = "France",
"GB" = "Great Britain", "GR" = "Greece", "HR" = "Croatia", "HU" = "Hungary",
"IE" = "Ireland", "IS" = "Iceland", "IT" = "Italy", "LT" = "Lithuania",
"LU" = "Luxembourg", "LV" = "Latvia", "MT" = "Malta", "NL" = "Netherlands",
"NO" = "Norway", "PL" = "Poland", "PT" = "Portugal", "RO" = "Romania",
"RS" = "Serbia", "SE" = "Sweden", "SI" = "Slovenia", "SK" = "Slovakia",
"TR" = "Turkije")

With all the required data loaded, we can now concentrate on the descriptive analysis of the
green building certifications.

3 Descriptive analysis by years and countries

3.1 Grouping the observations

As a first step, we group the data by year and produce a dataframe (byYear) with the count
of certifications by year. In a second dataframe (byYearAggr) we aggregate the number of
certifications over the years to get the numbers of the certified green buildings.
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byYear <- green %>%
count(CertYear)

# Calculate the aggregates
byYearAggr = byYear
byYearAggr$nAggr = sapply(byYearAggr$CertYear,

function(x){
sum(byYearAggr$n[byYearAggr$CertYear <= x])

})

3.2 Do the numbers of certifications increase over time?

The numbers of certifications by Certification Schema and by Year are:

ct <- CrossTable(green$CertYear, green$Schema, prop.t = F, prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
|-------------------------|

Total Observations in Table: 29864

| green$Schema
green$CertYear | BREEAM | LEED | Row Total |
---------------|-----------|-----------|-----------|

2006 | 0 | 2 | 2 |
| 0.000 | 1.000 | 0.000 |
| 0.000 | 0.001 | |

---------------|-----------|-----------|-----------|
2007 | 0 | 1 | 1 |

| 0.000 | 1.000 | 0.000 |
| 0.000 | 0.000 | |

---------------|-----------|-----------|-----------|
2008 | 0 | 1 | 1 |
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| 0.000 | 1.000 | 0.000 |
| 0.000 | 0.000 | |

---------------|-----------|-----------|-----------|
2009 | 42 | 10 | 52 |

| 0.808 | 0.192 | 0.002 |
| 0.002 | 0.003 | |

---------------|-----------|-----------|-----------|
2010 | 240 | 22 | 262 |

| 0.916 | 0.084 | 0.009 |
| 0.009 | 0.008 | |

---------------|-----------|-----------|-----------|
2011 | 773 | 66 | 839 |

| 0.921 | 0.079 | 0.028 |
| 0.029 | 0.023 | |

---------------|-----------|-----------|-----------|
2012 | 1307 | 99 | 1406 |

| 0.930 | 0.070 | 0.047 |
| 0.048 | 0.034 | |

---------------|-----------|-----------|-----------|
2013 | 1552 | 146 | 1698 |

| 0.914 | 0.086 | 0.057 |
| 0.058 | 0.051 | |

---------------|-----------|-----------|-----------|
2014 | 1578 | 190 | 1768 |

| 0.893 | 0.107 | 0.059 |
| 0.058 | 0.066 | |

---------------|-----------|-----------|-----------|
2015 | 2069 | 219 | 2288 |

| 0.904 | 0.096 | 0.077 |
| 0.077 | 0.076 | |

---------------|-----------|-----------|-----------|
2016 | 2383 | 207 | 2590 |

| 0.920 | 0.080 | 0.087 |
| 0.088 | 0.072 | |

---------------|-----------|-----------|-----------|
2017 | 2007 | 266 | 2273 |

| 0.883 | 0.117 | 0.076 |
| 0.074 | 0.092 | |

---------------|-----------|-----------|-----------|
2018 | 1794 | 299 | 2093 |

| 0.857 | 0.143 | 0.070 |
| 0.066 | 0.104 | |

---------------|-----------|-----------|-----------|
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2019 | 2128 | 278 | 2406 |
| 0.884 | 0.116 | 0.081 |
| 0.079 | 0.096 | |

---------------|-----------|-----------|-----------|
2020 | 1736 | 290 | 2026 |

| 0.857 | 0.143 | 0.068 |
| 0.064 | 0.101 | |

---------------|-----------|-----------|-----------|
2021 | 2870 | 291 | 3161 |

| 0.908 | 0.092 | 0.106 |
| 0.106 | 0.101 | |

---------------|-----------|-----------|-----------|
2022 | 3386 | 203 | 3589 |

| 0.943 | 0.057 | 0.120 |
| 0.125 | 0.070 | |

---------------|-----------|-----------|-----------|
2023 | 3116 | 293 | 3409 |

| 0.914 | 0.086 | 0.114 |
| 0.115 | 0.102 | |

---------------|-----------|-----------|-----------|
Column Total | 26981 | 2883 | 29864 |

| 0.903 | 0.097 | |
---------------|-----------|-----------|-----------|

When we plot the number of certifications by year, we see a clear increase.

byYear %>%
ggplot(aes(x=CertYear, y=n)) +

geom_col() +
labs(title="Number of Certifications by Year",

x="Year", y = "Number of Certifications")
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Since the certified buildings accumulate over the years, the increase in the number of certified
green buildings (the “Stock”), is much more pronounces.

byYearAggr %>%
ggplot(aes(x=CertYear, y=nAggr)) +

geom_col() +
labs(title="Stock of Certified Buildings by Year",

x="Year", y = "Number of Buildings")
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As the above table shows, the increase in the number of certifications is to a large extent due to
the certifications by BREEAM, which account for over 90% of all certifications. To estimate
the average annual increase in the number of green building certifications and to check for
statistical significance, we run a log-linear regression of the number of certifications by year.

reg <- lm(log(n)~CertYear, data=green %>%
count(CertYear))

(lm <- summary(reg))

Call:
lm(formula = log(n) ~ CertYear, data = green %>% count(CertYear))

Residuals:
Min 1Q Median 3Q Max

-3.2548 -1.1278 0.1339 1.4311 2.2409

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -876.64741 160.48476 -5.462 5.21e-05 ***
CertYear 0.43820 0.07966 5.501 4.84e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 1.754 on 16 degrees of freedom
Multiple R-squared: 0.6541, Adjusted R-squared: 0.6325
F-statistic: 30.26 on 1 and 16 DF, p-value: 4.84e-05

The estimation shows an average annual increase of 43.82%. With a t-value of 5.5, this relation
is highly significant. The lower and upper bounds of the 95%-confidence interval are 26.93 and
60.71, respectively.

3.3 How do certifications distribute over countries?

In this section, we do the same analysis across countries. First, we tabulate the numbers and
shares of certifications by Certification Schema and Country:

ct <- CrossTable(green$country, green$Schema, prop.t = F, prop.chisq = F)

Cell Contents
|-------------------------|
| N |
| N / Row Total |
| N / Col Total |
|-------------------------|

Total Observations in Table: 29864

| green$Schema
green$country | BREEAM | LEED | Row Total |
--------------|-----------|-----------|-----------|

AT | 12 | 39 | 51 |
| 0.235 | 0.765 | 0.002 |
| 0.000 | 0.014 | |

--------------|-----------|-----------|-----------|
BE | 327 | 18 | 345 |

| 0.948 | 0.052 | 0.012 |
| 0.012 | 0.006 | |

--------------|-----------|-----------|-----------|
BG | 36 | 14 | 50 |
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| 0.720 | 0.280 | 0.002 |
| 0.001 | 0.005 | |

--------------|-----------|-----------|-----------|
CH | 9 | 56 | 65 |

| 0.138 | 0.862 | 0.002 |
| 0.000 | 0.019 | |

--------------|-----------|-----------|-----------|
CY | 1 | 0 | 1 |

| 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | |

--------------|-----------|-----------|-----------|
CZ | 201 | 66 | 267 |

| 0.753 | 0.247 | 0.009 |
| 0.007 | 0.023 | |

--------------|-----------|-----------|-----------|
DE | 53 | 335 | 388 |

| 0.137 | 0.863 | 0.013 |
| 0.002 | 0.116 | |

--------------|-----------|-----------|-----------|
DK | 10 | 17 | 27 |

| 0.370 | 0.630 | 0.001 |
| 0.000 | 0.006 | |

--------------|-----------|-----------|-----------|
EE | 3 | 16 | 19 |

| 0.158 | 0.842 | 0.001 |
| 0.000 | 0.006 | |

--------------|-----------|-----------|-----------|
ES | 2169 | 568 | 2737 |

| 0.792 | 0.208 | 0.092 |
| 0.080 | 0.197 | |

--------------|-----------|-----------|-----------|
FI | 180 | 228 | 408 |

| 0.441 | 0.559 | 0.014 |
| 0.007 | 0.079 | |

--------------|-----------|-----------|-----------|
FR | 2316 | 63 | 2379 |

| 0.974 | 0.026 | 0.080 |
| 0.086 | 0.022 | |

--------------|-----------|-----------|-----------|
GB | 15820 | 112 | 15932 |

| 0.993 | 0.007 | 0.533 |
| 0.586 | 0.039 | |

--------------|-----------|-----------|-----------|

12



GR | 6 | 28 | 34 |
| 0.176 | 0.824 | 0.001 |
| 0.000 | 0.010 | |

--------------|-----------|-----------|-----------|
HR | 1 | 5 | 6 |

| 0.167 | 0.833 | 0.000 |
| 0.000 | 0.002 | |

--------------|-----------|-----------|-----------|
HU | 123 | 59 | 182 |

| 0.676 | 0.324 | 0.006 |
| 0.005 | 0.020 | |

--------------|-----------|-----------|-----------|
IE | 88 | 125 | 213 |

| 0.413 | 0.587 | 0.007 |
| 0.003 | 0.043 | |

--------------|-----------|-----------|-----------|
IS | 29 | 0 | 29 |

| 1.000 | 0.000 | 0.001 |
| 0.001 | 0.000 | |

--------------|-----------|-----------|-----------|
IT | 77 | 434 | 511 |

| 0.151 | 0.849 | 0.017 |
| 0.003 | 0.151 | |

--------------|-----------|-----------|-----------|
LT | 65 | 18 | 83 |

| 0.783 | 0.217 | 0.003 |
| 0.002 | 0.006 | |

--------------|-----------|-----------|-----------|
LU | 127 | 2 | 129 |

| 0.984 | 0.016 | 0.004 |
| 0.005 | 0.001 | |

--------------|-----------|-----------|-----------|
LV | 33 | 3 | 36 |

| 0.917 | 0.083 | 0.001 |
| 0.001 | 0.001 | |

--------------|-----------|-----------|-----------|
MT | 2 | 0 | 2 |

| 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | |

--------------|-----------|-----------|-----------|
NL | 3442 | 33 | 3475 |

| 0.991 | 0.009 | 0.116 |
| 0.128 | 0.011 | |
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--------------|-----------|-----------|-----------|
NO | 248 | 9 | 257 |

| 0.965 | 0.035 | 0.009 |
| 0.009 | 0.003 | |

--------------|-----------|-----------|-----------|
PL | 1048 | 232 | 1280 |

| 0.819 | 0.181 | 0.043 |
| 0.039 | 0.080 | |

--------------|-----------|-----------|-----------|
PT | 31 | 10 | 41 |

| 0.756 | 0.244 | 0.001 |
| 0.001 | 0.003 | |

--------------|-----------|-----------|-----------|
RO | 174 | 50 | 224 |

| 0.777 | 0.223 | 0.008 |
| 0.006 | 0.017 | |

--------------|-----------|-----------|-----------|
RS | 2 | 0 | 2 |

| 1.000 | 0.000 | 0.000 |
| 0.000 | 0.000 | |

--------------|-----------|-----------|-----------|
SE | 241 | 156 | 397 |

| 0.607 | 0.393 | 0.013 |
| 0.009 | 0.054 | |

--------------|-----------|-----------|-----------|
SI | 3 | 1 | 4 |

| 0.750 | 0.250 | 0.000 |
| 0.000 | 0.000 | |

--------------|-----------|-----------|-----------|
SK | 67 | 22 | 89 |

| 0.753 | 0.247 | 0.003 |
| 0.002 | 0.008 | |

--------------|-----------|-----------|-----------|
TR | 37 | 164 | 201 |

| 0.184 | 0.816 | 0.007 |
| 0.001 | 0.057 | |

--------------|-----------|-----------|-----------|
Column Total | 26981 | 2883 | 29864 |

| 0.903 | 0.097 | |
--------------|-----------|-----------|-----------|
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Then, we plot the total number of certifications, which is equal to the number of certified
buildings, by countries.

byCountryTotals <- green %>%
count(country)

green %>%
count(country) %>%
ggplot(aes(x=country,y=n)) +
geom_col() +
ggtitle("number of certifications")
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We see the strong dominance of the UK. Since the countries in Europe are of very different size,
we set them in relation to some size indicators. First, we plot the numbers of certifications
relative to the coutry population in 2019.

green %>%
count(country) %>%
merge(PopulationByCountry, by = "country") %>%
mutate(nrel = n/pop) %>%
ggplot(aes(x=country,y=nrel)) +
geom_col() +
ggtitle("certifications per population")
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Then, we set the number of certifications in relation to the number of employees in construction
in 2018.

green %>%
count(country) %>%
merge(constructionEmploymentByCountry, by = "country") %>%
mutate(nrel = n/values) %>%
ggplot(aes(x=country,y=nrel)) +
geom_col() +
ggtitle("certifications per construction worker")
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3.4 Are the numbers of certifications concentrated in certain countries?

To see how strong the concentration of certifications is over countries, we calculate concentra-
tion indices (Theil indices) for the numbers of certifications by LEED and BREEAM and by
country. These indices range from 0 (most concentrated) to 3.4965 (evenly distributed over
33 countries). Note that smaller values mean a stronger concentration. Code listing Listing 1
implements the computation of the Theil indices.

Listing 1 Computation of Theil indices

theil <- function(x) {
x <- x/sum(x)
y <- x*log(x)
y[is.nan(y)] <- 0
return(round(-1*sum(y),5))

}

The Theil indices for the certification schemas and for the total areas follows:

TheilTable <- function() {
cat("Theil indices by Certification Schema\n\n")
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cat(" Certification Schema Theil index\n")
cat(" ==================== ===========\n")
cat(paste0(" BREEAM"," ",

round(theil(ct$prop.col[,"BREEAM"]),3),"\n"))
cat(paste0(" LEED"," ",

round(theil(ct$prop.col[,"LEED"]),3),"\n"))
cat(" -------------------- -----------\n")
cat(paste0(" TOTAL"," ",

round(theil(byCountryTotals$n),3),"\n"))
}
TheilTable()

Theil indices by Certification Schema

Certification Schema Theil index
==================== ===========
BREEAM 1.54
LEED 2.642
-------------------- -----------
TOTAL 1.794

All three indices show a considerable level of concentration across European countries. The
concentration of the total figure is strongly attributable to the cross-country concentration of
the BREEAM certifications.

To see where the certifications are concentrating, We list all the countries with a share of more
than 5% of the respective Certification Schema. For BREEAM we get (in percent):

round(ct$prop.col[,"BREEAM"][ct$prop.col[,"BREEAM"]>0.05]*100,3)

ES FR GB NL
8.039 8.584 58.634 12.757

For LEED, the corresponding list of countries is (in percent):

round(ct$prop.col[,"LEED"][ct$prop.col[,"LEED"]>0.05]*100,3)

DE ES FI IT PL SE TR
11.620 19.702 7.908 15.054 8.047 5.411 5.689

18



As the indices show, BREEAM is considerably more concentrated. 58.6% of the BREEAM
certifications are in GB. Besides GB, only NL, ES, and FR reach shares of over 5%. For LEED,
the highest share in Europe is in ES (19.4%). Shares above 5% are also found in DE, FI, IT,
PL, SE, TR.

4 Analysis by NUTS3 regions

In this chapter, we analyze the distribution of LEED and BREEAM certified green buildings
at a regional level; by the NUTS3 regions of Europe. After some data preparation we first
characterize the regional distribution of green buildings. We will see that some regions contain
a considerable number of green buildings, while almost half the NUTS3 regions do not contain
any green buildings at all. Then, we again calculate Theil indices, this time with NUTS3
regions as units of observation. Since we again find substantial concentration of green buildings,
we then calculate spatial indices, which tell us how spatially concentrated the pattern is.
We calculate Moran’s I indices and local Moran indicators. According to this analysis, the
distribution of green buildings over NUTS3 regions shows significant spatial autocorrelation.
This means that NUTS3 regions with many (few) green buildings tend to be neighboring
regions with many (few) green buildings.

4.1 Preparatory steps

In this section we generate the count data by NUTS3 region and by year. The aim is to
calculate concentration measures (Theil-indices) across the NUTS3 regions for each of the
years. This is a non-spatial concentration measure.

We aggregate the count of buildings by NUTS3 region. First, we create a data-frame with the
total number (n).

NutsCount <- green %>%
count(NUTS) %>%
filter(nchar(NUTS)==5)

Then, we generate the counts year by year (2006-2023) and merge the result to the data-frame.
The following function does all the necessary calculations. It gets the year and the data-frame
NutsCount as input and returns the data-frame with the new column (number of certifications
in this year in each of the NUTS3 regions).

countsByYear <- function(yr, NutsCount) {
yrname <- paste0("n", yr)

NutsCountTemp <- green %>%
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filter(CertYear == yr) %>%
count(NUTS, name = "m") %>%
filter(nchar(NUTS)==5)

NutsCount <- merge(NutsCount, NutsCountTemp, by.x="NUTS",
by.y="NUTS", all = T)

NutsCount$m[is.na(NutsCount$m)] <- 0
NutsCount <- NutsCount %>%

rename({{yrname}} := m)
return(NutsCount)

}

In the following code chunk we add year after year to the data-frame.

for (y in years) {
NutsCount <- countsByYear(y, NutsCount)

}

Then, we create the stock of green buildings by adding the respective flow variables.

NutsCount <- NutsCount %>%
mutate(

a2006 = n2006,
a2007 = a2006 + n2007,
a2008 = a2007 + n2008,
a2009 = a2008 + n2009,
a2010 = a2009 + n2010,
a2011 = a2010 + n2011,
a2012 = a2011 + n2012,
a2013 = a2012 + n2013,
a2014 = a2013 + n2014,
a2015 = a2014 + n2015,
a2016 = a2015 + n2016,
a2017 = a2016 + n2017,
a2018 = a2017 + n2018,
a2019 = a2018 + n2019,
a2020 = a2019 + n2020,
a2021 = a2020 + n2021,
a2022 = a2021 + n2022,
a2023 = a2022 + n2023

)
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Now we merge the list of NUTS3 codes and names with the NutsCounts. We set parameter
all to TRUE so that all regions stay in the data-frame. For regions without green buildings
the respective values are set to NA. Then, we replace all the NAs with zeros.

nutsFull <- merge(nuts3, NutsCount, by.x="NUTS_ID", by.y = "NUTS", all = TRUE)
nutsFull$n[is.na(nutsFull$n)] <- 0
for (y in years) {
n <- paste0("n",y)
a <- paste0("a",y)
nutsFull[n][is.na(nutsFull[n])] <- 0
nutsFull[a][is.na(nutsFull[a])] <- 0

}

At the end we merge the flow and stock counts to the data-frame nuts3_sf so that we can
use these numbers in maps.

nuts3_sf <- merge(nuts3_sf, nutsFull, by.x="NUTS_ID", by.y="NUTS_ID")

4.2 Descriptive Statistics by NUTS3

There are 768 NUTS3 regions with at least one Green Building. In the data-frame nutsFull
there are 1522 observations. Thus there are 754 regions without any certified green building.

The following map shows all the NUTS3 regions color coded by their number of green buildings.
All the white regions do not contain any LEED or BREEAM certified green building at all.
The pattern we see in this map, in part results from the limited number of certification schemas
that we use.

p <- nuts3_sf %>%
mutate(gb = cut(nuts3_sf$a2023, breaks=c(-Inf, 0, 1, 10, 100, 1000, Inf))) %>%
ggplot() +

geom_sf(aes(fill=gb)) +
xlim(-30, 43) +
ylim(27, 71) +
scale_fill_manual(values=c("white","yellow","orange","red","green","blue"))+
theme(legend.position = "bottom",

plot.margin = margin(1, 1, 0, 1, "cm"),
panel.background = element_rect(fill = "white"),
plot.background = element_rect(

fill = "grey90",
colour = "black"

)
)

#ggplotly(p)
p
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The descriptive statistics of the total numbers of green buildings per region show that we have
a power-law type distribution with few regions with large numbers and many with very small
numbers. While in average there are 19.62 certified green buildings per region, more than half
of the regions have just one green building or none. Three quarters of the region have 8 such
buildings or fewer.

summary(nutsFull$n)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00 0.00 1.00 19.62 8.00 1065.00

The histogram illustrates this situation clearly.

hist(nutsFull$n, breaks = 100)
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At the top end, there are just 10 NUTS3 regions with more than 300 certified green build-
ings. Only Madrid, the Spanish capital, has over 1,000 green buildings certified by LEED
or BREEAM. In general, we see most top European cities represented in this list: Madrid,
London, Amsterdam, Paris, Barcelona, etc.

nutsFull %>%
filter(n > 300) %>%
select(NUTS_ID, NAME_LATN, n) %>%
arrange(-n)

NUTS_ID NAME_LATN n
1 ES300 Madrid 1065
2 UKI32 Westminster 953
3 NL329 Groot-Amsterdam 812
4 UKI31 Camden and City of London 665
5 ES511 Barcelona 590
6 FR101 Paris 528
7 NL310 Utrecht 431
8 UKJ11 Berkshire 410
9 FR105 Hauts-de-Seine 376
10 PL911 Miasto Warszawa 366
11 UKI44 Lewisham and Southwark 354
12 UKI41 Hackney and Newham 353
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13 UKI42 Tower Hamlets 341
14 NL33C Groot-Rijnmond 309

4.3 Theil indices across NUTS3

Now we have a data-frame with all NUTS3 by all certified buildings (n), certified buildings per
year (nyyyy) and the stock of green buildings per year (ayyyy). This allows us to calculate
Theil-indices for the years (lower values mean stronger concentration). Since there are 1522
NUTS3 regions in the dataset, the maximum Theil value in the case of equal distribution is
7.3277805.

printTheil <- function() {
cat("Theil concentration indices\n\n")
cat(" YEAR FLOWS STOCK\n")
cat(" ---- ----- -----\n")
for (x in years) {

n <- paste0("n",x)
a <- paste0("a",x)
cat(paste0(" ",x,": ",

format(theil(nutsFull[[n]]), width=7, digits=3, nsmall=3)," ",
format(theil(nutsFull[[a]]), width=7, digits=3, nsmall=3),"\n"))

}
}

printTheil()

Theil concentration indices

YEAR FLOWS STOCK
---- ----- -----
2006: 0.693 0.693
2007: 0.000 1.099
2008: 0.000 1.386
2009: 3.451 3.561
2010: 4.658 4.757
2011: 5.011 5.091
2012: 5.110 5.200
2013: 5.187 5.278
2014: 5.260 5.335
2015: 5.209 5.356
2016: 5.185 5.358
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2017: 5.194 5.375
2018: 5.167 5.384
2019: 5.240 5.407
2020: 5.328 5.442
2021: 5.159 5.470
2022: 4.930 5.475
2023: 5.070 5.469

With the exception of the year 2023, the Theil index values of the stock increase year after
year. This means that with the growing stock of Green Buildings they are becoming less
concentrated. As the descriptive statistics by NUTS3 show, also by the end of the observation
period the distribution of green buildings over NUTS3 regions is strongly concentrated.

4.4 Moran’s I Analysis

This observed concentration is measured across the NUTS3 regions, irrespective of their lo-
cation. The regions with a large number of green buildings could be spread randomly across
Europe or cluster in a certain small area. To check the spatial relation between NUTS3 regions
with many green buildings, we turn to Moran’s I analysis.

Moran’s I analysis takes into account the spatial configuration of Europe’s NUTS3 regions.
From the shapefile we extract a neighborhood matrix that indicates which NUTS3 regions
have a common border. Based on this neighborhood matrix, we can then calculate for every
NUTS3 region the average number of green buildings in its neighboring regions. This generates
the spatially lagged value. The Moran’s I statistic shows the relationship between the values
and the respective spatially lagged values across all NUTS3 regions. A significantly positive
value shows that regions with many (few) green buildings tend to be neighboring regions with
many (few) green buildings.

First, we prepare the spatial weight matrix.

nb <- poly2nb(nuts3_sf, queen=TRUE)
lw <- nb2listw(nb, style="W", zero.policy=TRUE)

Then, we define a function that does all the relevant calculations: it computes the spatially
lagged values and plots them against the raw values. Then, it computes Moran’s I, and runs
the moran test to find whether or not the relation is statistically significant.

doMoran <- function(yr, column) {
a.lag <- lag.listw(lw, column)
plot(a.lag ~ column, pch=16, asp=1, main=yr, xlim=c(0,1200), ylim=c(0,550))
M1 <- lm(a.lag ~ column)
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abline(M1, col="blue")
I <- moran(column, lw, length(nb), Szero(lw))[1]
cat(paste("YEAR: ", yr),"\n")
cat(paste("NUTS3 regions with Green Building(s):",

length(which(column != 0))),"\n")
print(moran.test(column, lw, alternative = "greater"))

}

Now, we run the Moran functions for each of the years. To be able to compare the scatterplots
over the years, we have fixed their axes to the identical limits.

for (y in years) {
a <- paste0("a", y)
doMoran(y, nuts3_sf[[a]])

}
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YEAR: 2006
NUTS3 regions with Green Building(s): 2

Moran I test under randomisation

data: column
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weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = -0.037772, p-value = 0.5151
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

-0.0011318550 -0.0006752194 0.0001461467
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YEAR: 2007
NUTS3 regions with Green Building(s): 3

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = -0.046265, p-value = 0.5185
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

-0.0013254559 -0.0006752194 0.0001975327
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YEAR: 2008
NUTS3 regions with Green Building(s): 4

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = -0.073398, p-value = 0.5293
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

-0.0017718371 -0.0006752194 0.0002232256
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YEAR: 2009
NUTS3 regions with Green Building(s): 40

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 10.846, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.1799289580 -0.0006752194 0.0002772749
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YEAR: 2010
NUTS3 regions with Green Building(s): 149

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 21.858, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.3709419005 -0.0006752194 0.0002890583
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YEAR: 2011
NUTS3 regions with Green Building(s): 257

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 28.635, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.4873153573 -0.0006752194 0.0002904218
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YEAR: 2012
NUTS3 regions with Green Building(s): 317

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 34.702, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5874608500 -0.0006752194 0.0002872357
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YEAR: 2013
NUTS3 regions with Green Building(s): 380

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 33.917, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5730391120 -0.0006752194 0.0002861286
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YEAR: 2014
NUTS3 regions with Green Building(s): 446

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 34.218, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5770210092 -0.0006752194 0.0002850301
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YEAR: 2015
NUTS3 regions with Green Building(s): 502

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 34.296, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5748726185 -0.0006752194 0.0002816291
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YEAR: 2016
NUTS3 regions with Green Building(s): 542

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 33.981, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5664289216 -0.0006752194 0.0002785099
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YEAR: 2017
NUTS3 regions with Green Building(s): 584

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 33.103, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5516760462 -0.0006752194 0.0002784163
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YEAR: 2018
NUTS3 regions with Green Building(s): 615

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 32.312, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5386625321 -0.0006752194 0.0002786052
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YEAR: 2019
NUTS3 regions with Green Building(s): 647

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 31.697, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5301958800 -0.0006752194 0.0002805053
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YEAR: 2020
NUTS3 regions with Green Building(s): 679

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 30.58, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.5124652617 -0.0006752194 0.0002815805
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YEAR: 2021
NUTS3 regions with Green Building(s): 714

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 28.345, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.4762978943 -0.0006752194 0.0002831657
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YEAR: 2022
NUTS3 regions with Green Building(s): 748

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 24.968, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.4192940260 -0.0006752194 0.0002829199
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YEAR: 2023
NUTS3 regions with Green Building(s): 768

Moran I test under randomisation

data: column
weights: lw
n reduced by no-neighbour observations

Moran I statistic standard deviate = 22.578, p-value < 2.2e-16
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.3773527178 -0.0006752194 0.0002803293

We see that in the first three years (2006-2008) certified green buildings pop up randomly.
For these years the Moran’s I is close to zero and clearly not significant. In 2008, however,
there were only four NUTS3 regions in Europe with - a total number of four - certified green
buildings. In 2009, 52 green buildings were certified, the number of NUTS3 regions with
certified green buildings jumped to 40, and we begin to see a highly significant positive spatial
relation in the spatial distribution of Green Buildings. From 2009 onward, Moran’s I values are
significantly more positive than expected, indicating a clear spatial concentration of certified
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green buildings. Moran’s I reaches its highest value in 2012. It stays on a high level until 2018.
Then, it declines continuously until the year 2023. We can interpret this as an indicator for an
early period of growth when new green buildings were mainly certified in the neighborhood of
existing green buildings. In the later period, green buildings seem to have diffused out to new
NUTS3 regions.

4.5 Local Moran’s I

In the previous series of scatterplots we place the number of green buildings on the x-axis
and the average number of green buildings of the respective neighbors on the y-axis. When
we subtract the respective average from both variables, we can place the regions into four
quadrants: the top right quadrant with above average values of the region and of its neighbors
(called “high-high” or “HH” in exploratory spatial analysis); at the bottom left regions with
below average values in both dimensions (called “low-low” or “LL”); “low-high” or “LH” regions
are in the top left quadrant, “high-low” or “HL” in the bottom right quadrant.

The next code chunk calculates these indicators and puts them into a scatter plot and a map.

local.MI <- cbind(nuts3_sf, localmoran(nuts3_sf$a2023, lw))
local.MI$Ii <- local.MI$Ii - mean(local.MI$Ii, na.rm = TRUE)

local.MI$lag.a2023<- lag.listw(lw,local.MI$a2023, NAOK = TRUE)

# centers the variable of interest around its mean

local.MI$a2023 <- local.MI$a2023 - mean(local.MI$a2023, na.rm = TRUE)
local.MI$lag.a2023 <- local.MI$lag.a2023 - mean(local.MI$lag.a2023, na.rm = TRUE)
local.MI$quadr <- "HH"
local.MI$quadr[local.MI$a2023 < 0 & local.MI$lag.a2023 < 0] <- "LL"
local.MI$quadr[local.MI$a2023 < 0 & local.MI$lag.a2023 >= 0] <- "LH"
local.MI$quadr[local.MI$a2023 >= 0 & local.MI$lag.a2023 < 0] <- "HL"

plot(local.MI$a2023, local.MI$lag.a2023)
abline(h = 0)
abline(v = 0)
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p <- ggplot(local.MI) +
geom_sf(aes(fill=quadr)) +
xlim(-30, 55) +
ylim(20, 71) +
scale_fill_manual(values=c("red","orange","lightblue","blue")) +
theme(legend.position = "bottom",

plot.margin = margin(1, 1, 0, 1, "cm"),
panel.background = element_rect(fill = "white"),
plot.background = element_rect(

fill = "grey90",
colour = "black"

)
)

#ggplotly(p)
p
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Let us count, how many regions fall into each of the quadrants.

(lm.counts <- summary(factor(local.MI$quadr)))

HH HL LH LL
206 72 88 1156

As the summary shows, most of the regions (1156) fall into the LL (bottom-left) quadrant.
The second largest category are regions falling into HH (206). The HL and LH quadrants
contain the smallest numbers of regions (72 and 88, respectively).

5 Calculating the point of gravity of all green buildings

From the analysis so far we know

1. that the numbers of certifications and of certified green buildings have grown massively
over the observation period and

2. that the certifications and the building stock are concentrated at the country and at the
NUTS3 level, and

3. that they occur in spatial clusters.
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In this section we want to answer the question, how this spatial pattern of green buildings
and of green building certifications evolves over time. Since we know the exact locations of all
certified green buildings, we can calculate the points of gravity year by year. The coordinates
of the respective point of gravity are just the average coordinates of all the respective buildings
or certifications.

So, in the following code chunk we compute the mean latitude and mean longitude values for
every year and store the result in the data-frame centroid. Since the centroids for the first
three years are based on very few buildings, we exclude these years in the final step of the
code chunk.

# First, we store the number of observations and the sum the latitudes
# and longitudes for every year.
centroids <- green %>%
group_by(CertYear) %>%
summarize(n = n(), sumLat = sum(lat), sumLon = sum(lon))

# Second, we calculate and add means and columns of zeros
centroids <- centroids %>%
mutate(meanLat = sumLat/n, meanLon = sumLon/n, nStock = 0,

sumLatStock = 0, sumLonStock =0)

# For every year, we calculate the sum of counts and the sum of
# lat and lon UP TO THAT YEAR
# This is what "sum(head(..., i))" does.
for (i in 1:nrow(centroids)) {
centroids$nStock[i] <- sum(head(centroids$n ,i))
centroids$sumLatStock[i] <- sum(head(centroids$sumLat ,i))
centroids$sumLonStock[i] <- sum(head(centroids$sumLon ,i))

}

# Fourth, we calculate the means for every year from the sums.
centroids <- centroids %>%
mutate(meanLatStock = sumLatStock/nStock,

meanLonStock = sumLonStock/nStock)

centroids <- centroids %>% filter(nStock > 50)

In a first step, we generate a base map that does not show any boundaries. Then, we put
the stock-centroids on that map, to see, how the centroids of the stock of the certified green
buildings changes from year to year. We focus the map to the Channel and parts of Great
Britain, France, Belgium, and the Netherlands.
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base_map <- ggplot(nuts3_sf) +
geom_sf(colour="light green", fill="light green")

map_stock_data <-
base_map +
geom_point(data=centroids,

aes(x=meanLonStock, y=meanLatStock), colour="Black",
fill="Deep Pink", pch=21, size=3, alpha=I(1.0)) +

geom_path(data=centroids,
aes(x=meanLonStock, y=meanLatStock), linewidth=1,
alpha=I(0.7)) +

geom_text(data=centroids,aes(x=meanLonStock, y=meanLatStock,
label=CertYear), hjust=-0.1, vjust=-0.1)

map_stock_data +
coord_sf(xlim = c(-1, 6), ylim = c(48, 53), expand = FALSE)
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While the centroid was at the French coast in 2009, it then jumped across the Channel the
coast of Essex, North-East of London. From there, it gradually looped around and moved
South-East back to the continent. Since we know that certifications in Great Britain are
mainly BREEAM, this illustrates the early dominance of this certification schema and the
gradual increase of certification activities by LEED on the European continent.
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This is clearly confirmed when we look at the centroids of the certifications year by year.

map_flow_data <-
base_map +

geom_point(data=centroids,
aes(x=meanLon, y=meanLat), colour="Black",
fill="Deep Pink",pch=21, size=3, alpha=I(1.0)) +

geom_path(data=centroids,
aes(x=meanLon, y=meanLat), linewidth=1, alpha=I(0.7)) +

geom_text(data=centroids,aes(x=meanLon, y=meanLat, label=CertYear),
hjust=-0.1, vjust=-0.1)

map_flow_data +
coord_sf(xlim = c(-1, 6), ylim = c(48, 53), expand = FALSE)
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This map shows, how the certification activities year after year in average move from Great
Britain toward the South to France. The centroids of 2009 and 2016 almost perfectly coincide.
This creates this perceived “loop” over Essex and the North Sea.
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6 Estimating the growth trajectory of the number of green
buildings

In this chapter, we want to take a first step toward modeling the growth trajectories of green
guilding certifications.

We assume that the number of certified green buildings over time follows a growth process
that becomes saturated at some point. Such a relation can be captured by the logistic curve
(see chapter 24 of (Childs, Hindle, and Warren, n.d.)).

𝑦 = 𝜙1 ∗ 1
1 + exp((𝜙2 − 𝑥)/𝜙3)

This logistic curve has three parameters that we can estimate with non-linear regression. The
three parameters and their meanings are:

1. 𝜙1 measures the upper limit (asymptote) of the S-curve
2. 𝜙2 measures the inflection point of the S-curve, i.e., the value of 𝑥 where 𝑦 has reached

half its maximum height. Here, the slope switches from increasing to decreasing.
3. 𝜙3 is a scale parameter that measures how quickly the function increases. The larger

this parameter, the more spread out is the S-curve.

6.1 Growth trajectory for the whole set of countries

nonlinAggr <- nls(nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3),
data=byYearAggr)

(totalSum <- summary(nonlinAggr))

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 3.584e+04 2.969e+03 12.07 3.99e-09 ***
phi_2 2.019e+03 5.969e-01 3382.57 < 2e-16 ***
phi_3 2.946e+00 2.584e-01 11.40 8.68e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 969.8 on 15 degrees of freedom
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Number of iterations to convergence: 0
Achieved convergence tolerance: 6.821e-07

byYearAggr$fittedNL = fitted(nonlinAggr)
ggplot(byYearAggr) +
geom_col(aes(x=CertYear,y=nAggr)) +
geom_line(aes(x=CertYear, y=fittedNL), color="green") +
geom_point(aes(x=CertYear, y=fittedNL), color="green") +
ggtitle("All countries")
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For later use, we create a new data-frame PopulationByCountryPlus with a row with the
total population of all the countries. We will use this information later.

PopulationByCountryPlus <- PopulationByCountry %>%
add_row(country = "TOTAL", pop = sum(PopulationByCountry$pop))

To be better able to compare these results to those for the individual countries, we compute
the following indicators:

1. Phi1ByPop, the parameter 𝜙1 standardized by the total population( = 100000*phi1/pop);
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2. Slope, the slope at the inflection point of the function, standardized to the same satura-
tion level. Since the slope at the inflection point (𝑥 = 𝜙2) is

𝜙1
2𝜙3

, the standardized slope
is just 1

2𝜙3
.

3. Tens, the year when the curve reaches 10% of the saturation level. This is calculated by
𝑥 = 𝜙2 − 𝜙3 ln( 1

𝑎 − 1) with 𝑎 = 0.1.

We calculate the same set of indicators for each of the countries as well below. The corre-
sponding values for all countries are shown below:

totalParams <- function(){
Phi1ByPop <- 100000*totalSum$coefficients[1,1]/sum(PopulationByCountry$pop)
slope <- 1/(2*totalSum$coefficients[3,1])
tens <- totalSum$coefficients[2,1]-totalSum$coefficients[3,1]*log(9)
cat(paste0("Phi1ByPop = ",round(Phi1ByPop,4),"\n"))
cat(paste0("Slope = ",round(slope,4),"\n"))
cat(paste0("Tens = ",round(tens,4),"\n"))

}
totalParams()

Phi1ByPop = 5.6829
Slope = 0.1697
Tens = 2012.4713

For the full set of countries, the model estimates a saturation level of 3.584 × 104 certified
green buildings. The inflection point of the growth process is estimated for the year 2018.94.
As compared to the individual countries, the overall distribution is more spread out than most
of the individual countries. Most likely, this is the effect of the aggregation of countries with
different growth trajectories.

6.2 Analysis by countries

Now, we apply the same analysis for each of the countries separately. To prepare the required
data, we first count the certificates by country and by year. This data-frame is the basis for
the following analyses.

byCountryYear <- green %>%
count(country, CertYear)

We create an empty dataframe to collect all the parameter estimates.
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parameters <- data.frame(country = "TOTAL",
phi1 = totalSum$coefficients[1,1],
phi2 = totalSum$coefficients[2,1],
phi3 = totalSum$coefficients[3,1])

To be able to loop over all the countries, we create the following function, which gets the
country code and based on that filters the country data, calculates the stock of the green
buildings per year, estimates the logistic equation, stores the parameter estimates in a data-
frame, and plots the bar chart of the green buildings and the green line of the estimated logistic
function.

trajectoryByCountry <- function(cntry) {
byYear <- byCountryYear %>%

filter(country == cntry)

byYear$nAggr = sapply(byYear$CertYear, function(x){
sum(byYear$n[byYear$CertYear <= x])})

nonlin <- nls(nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3), data=byYear)
reg2 <- summary(nonlin)
df <- data.frame(country = cntry,

phi1 = reg2$coefficients[1,1],
phi2 = reg2$coefficients[2,1],
phi3 = reg2$coefficients[3,1])

byYear$fittedNL = fitted(nonlin)
plot2 <- ggplot(byYear) +

geom_col(aes(x=CertYear,y=nAggr)) +
geom_line(aes(x=CertYear, y=fittedNL), color="green") +
geom_point(aes(x=CertYear, y=fittedNL), color="green") +
ggtitle(countryNames[cntry])

return(list(reg2,plot2,df))
}

As it turns out, the estimation procedure does not converge for 8 of the 33 the countries. These
countries are eliminated from the following analysis. The reason for their exclusion will be
discussed below.

for (c in countries) {
if ( c == "CY" | c == "EE" | c == "HR" | c == "IS" | c == "MT" |

c == "NL" | c == "RS" | c == "SI" ) {
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next
}
out <- trajectoryByCountry(c)
cat(paste0("\n",countryNames[c]),"\n\n")
cat("Certified Buildings (STOCK)\n")
print(out[1])
print(out[2])
parameters <- rbind(parameters, data.frame(out[3]))

}

Austria

Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 61.5686 7.4990 8.210 5.10e-06 ***
phi_2 2017.8853 0.9755 2068.498 < 2e-16 ***
phi_3 3.1875 0.4910 6.492 4.48e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.879 on 11 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 4.941e-06

[[1]]
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 432.1417 34.9085 12.38 3.42e-08 ***
phi_2 2019.1623 0.5824 3466.87 < 2e-16 ***
phi_3 3.0048 0.2459 12.22 3.95e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.12 on 12 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 3.849e-06
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 54.7200 1.4412 37.97 3.83e-12 ***
phi_2 2017.7448 0.1644 12273.05 < 2e-16 ***
phi_3 2.1317 0.1068 19.97 2.18e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9728 on 10 degrees of freedom

Number of iterations to convergence: 0
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Achieved convergence tolerance: 8.539e-07
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 76.0368 3.0384 25.02 2.38e-10 ***
phi_2 2018.6618 0.2591 7792.31 < 2e-16 ***
phi_3 2.4886 0.1331 18.70 4.13e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 1.269 on 10 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 2.625e-07
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 297.5600 25.9227 11.479 1.83e-07 ***
phi_2 2018.6343 0.5858 3445.756 < 2e-16 ***
phi_3 2.6124 0.2903 8.999 2.10e-06 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.43 on 11 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 9.028e-07
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

59



phi_1 398.7815 19.4930 20.46 1.07e-10 ***
phi_2 2016.9225 0.3537 5702.90 < 2e-16 ***
phi_3 2.4699 0.2226 11.09 1.15e-07 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.07 on 12 degrees of freedom

Number of iterations to convergence: 1
Achieved convergence tolerance: 2.978e-06
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)
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Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 28.5638 1.3512 21.14 1.33e-07 ***
phi_2 2015.8916 0.2572 7838.83 < 2e-16 ***
phi_3 1.9123 0.1801 10.62 1.44e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8705 on 7 degrees of freedom

Number of iterations to convergence: 1
Achieved convergence tolerance: 7.089e-06
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[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 8014.5408 2440.0484 3.285 0.00592 **
phi_2 2024.3411 1.0510 1926.079 < 2e-16 ***
phi_3 2.1052 0.1607 13.102 7.24e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 48.89 on 13 degrees of freedom

Number of iterations to convergence: 1
Achieved convergence tolerance: 1.403e-06
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Finland

Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 454.0996 22.5202 20.16 1.27e-10 ***
phi_2 2017.7956 0.3484 5791.09 < 2e-16 ***
phi_3 2.5747 0.1932 13.33 1.49e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12.12 on 12 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 2.808e-06
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France

Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 3461.4082 247.0853 14.01 8.47e-09 ***
phi_2 2021.0063 0.4188 4826.12 < 2e-16 ***
phi_3 2.6875 0.1379 19.48 1.89e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 39.02 on 12 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 6.629e-06

[[1]]
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 1.592e+04 4.761e+02 33.44 3.25e-13 ***
phi_2 2.016e+03 2.174e-01 9274.40 < 2e-16 ***
phi_3 2.244e+00 1.548e-01 14.50 5.73e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 468.5 on 12 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 8e-06
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 42.6452 4.8176 8.852 9.78e-06 ***
phi_2 2019.6693 0.7482 2699.526 < 2e-16 ***
phi_3 2.8039 0.3149 8.905 9.31e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.186 on 9 degrees of freedom

Number of iterations to convergence: 0
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Achieved convergence tolerance: 4.802e-06
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 281.0927 34.9492 8.043 6.21e-06 ***
phi_2 2021.0693 0.8879 2276.151 < 2e-16 ***
phi_3 3.4010 0.2712 12.540 7.39e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

67



Residual standard error: 4.543 on 11 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 5.113e-06
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[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 2.807e+02 1.209e+01 23.23 1.07e-10 ***
phi_2 2.021e+03 2.174e-01 9294.62 < 2e-16 ***
phi_3 2.120e+00 8.807e-02 24.07 7.27e-11 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.87 on 11 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 8.055e-06
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Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)
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phi_1 960.5215 143.2141 6.707 9.99e-06 ***
phi_2 2022.6996 0.9375 2157.483 < 2e-16 ***
phi_3 3.3106 0.2170 15.258 4.06e-10 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.21 on 14 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 8.285e-06
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[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)
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Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 94.2928 4.2677 22.09 5.62e-07 ***
phi_2 2019.7192 0.2075 9735.87 < 2e-16 ***
phi_3 1.6787 0.1181 14.21 7.59e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.853 on 6 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 3.649e-07

[[1]]

0

20

40

60

80

2016 2018 2020 2022
CertYear

nA
gg

r

Lithuania

Luxembourg

Certified Buildings (STOCK)

71



[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 184.578 27.656 6.674 5.54e-05 ***
phi_2 2020.741 1.033 1956.783 < 2e-16 ***
phi_3 3.188 0.342 9.324 3.01e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.149 on 10 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 1.359e-06
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Latvia

Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 58.7439 24.4767 2.40 0.05330 .
phi_2 2022.1536 2.1553 938.24 < 2e-16 ***
phi_3 2.5534 0.6138 4.16 0.00594 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.967 on 6 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 1.648e-06
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Norway

Certified Buildings (STOCK)
[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 242.0613 13.7008 17.668 7.19e-09 ***
phi_2 2017.1486 0.3350 6021.403 < 2e-16 ***
phi_3 1.6746 0.2516 6.657 5.66e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 14.81 on 10 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 5.778e-06
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[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 1974.0715 212.3291 9.297 1.52e-06 ***
phi_2 2021.4071 0.6494 3112.930 < 2e-16 ***
phi_3 2.8742 0.1952 14.721 1.39e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 26.76 on 11 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 1.188e-06
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[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 55.1096 10.4333 5.282 0.000506 ***
phi_2 2020.7321 0.8518 2372.323 < 2e-16 ***
phi_3 1.8685 0.3654 5.114 0.000633 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.421 on 9 degrees of freedom

Number of iterations to convergence: 0
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Achieved convergence tolerance: 9.104e-06
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[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 279.3309 17.8569 15.64 7.32e-09 ***
phi_2 2019.8626 0.3755 5379.68 < 2e-16 ***
phi_3 2.4227 0.1601 15.13 1.04e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 4.983 on 11 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 8.057e-07
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[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 443.4380 25.6124 17.31 2.5e-09 ***
phi_2 2017.4270 0.4008 5034.02 < 2e-16 ***
phi_3 2.4404 0.2431 10.04 7.1e-07 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 16.24 on 11 degrees of freedom

Number of iterations to convergence: 1
Achieved convergence tolerance: 1.826e-06
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[[1]]

Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)

Parameters:
Estimate Std. Error t value Pr(>|t|)
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phi_1 85.7769 6.2093 13.814 7.28e-07 ***
phi_2 2017.7766 0.4255 4741.848 < 2e-16 ***
phi_3 1.9371 0.2973 6.516 0.000185 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.625 on 8 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 3.652e-06
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Formula: nAggr ~ SSlogis(CertYear, phi_1, phi_2, phi_3)
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Parameters:
Estimate Std. Error t value Pr(>|t|)

phi_1 2.070e+02 3.545e+00 58.41 4.58e-15 ***
phi_2 2.017e+03 1.139e-01 17707.25 < 2e-16 ***
phi_3 1.997e+00 8.373e-02 23.85 8.01e-11 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.586 on 11 degrees of freedom

Number of iterations to convergence: 1
Achieved convergence tolerance: 1.151e-06
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6.2.1 Excluded Countries

The countries “Cyprus”, “Estonia”, “Croatia”, “Iceland”, “Malta”, “Serbia”, and “Slovenia”
all had fewer than 30 certified buildings. This turns out to be too few observations for the
estimation and we had to skip these countries. A special case is “The Netherlands”. With 3475
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this country has a substantial number of certified green buildings. The plot, however shows
that up to 2020, the increase is fairly moderate. After 2020, the numbers increase much more
strongly. When we try to estimate a logistic curve for the Netherlands, the procedure fails.
The parameter estimates do not converge but grow beyond bounds. We can only estimate two
of the three parameters and have to fix the third one.

byYear <- byCountryYear %>%
filter(country == "NL")

byYear$nAggr = sapply(byYear$CertYear, function(x){
sum(byYear$n[byYear$CertYear <= x])})

nonlinNL <- nls(nAggr ~ 3407*(1/(1+exp((phi2-CertYear)/phi3))),start = list(phi2=2024, phi3=2), data=byYear, trace=FALSE)
sum <- summary(nonlinNL)

byYear$fittedNL = fitted(nonlinNL)
ggplot(byYear) +
geom_col(aes(x=CertYear,y=nAggr)) +
ggtitle(countryNames["NL"])
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When we split the dataset into two period, before 2018 and 2018 and later, the model converges
for each of the periods:
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byYear <- byCountryYear %>%
filter(country == "NL") %>%
filter(CertYear < 2018)

byYear$nAggr = sapply(byYear$CertYear, function(x){
sum(byYear$n[byYear$CertYear <= x])})

nonlinNL <- nls(nAggr ~ SSlogis(CertYear, phi1, phi2, phi3), data=byYear)
sum <- summary(nonlinNL)
sum

Formula: nAggr ~ SSlogis(CertYear, phi1, phi2, phi3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi1 6.906e+02 3.560e+01 19.40 6.72e-06 ***
phi2 2.015e+03 1.830e-01 11008.47 < 2e-16 ***
phi3 1.358e+00 9.198e-02 14.77 2.58e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.07 on 5 degrees of freedom

Number of iterations to convergence: 0
Achieved convergence tolerance: 1.783e-06

byYear$fittedNL = fitted(nonlinNL)
ggplot(byYear) +
geom_col(aes(x=CertYear,y=nAggr)) +
geom_line(aes(x=CertYear, y=fittedNL), color="green") +
geom_point(aes(x=CertYear, y=fittedNL), color="green") +
ggtitle(paste(countryNames["NL"],"(before 2018)"))
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byYear <- byCountryYear %>%
filter(country == "NL") %>%
filter(CertYear >= 2018)

byYear$nAggr = sapply(byYear$CertYear, function(x){
sum(byYear$n[byYear$CertYear <= x])})

nonlinNL <- nls(nAggr ~ SSlogis(CertYear, phi1, phi2, phi3), data=byYear)
sum <- summary(nonlinNL)
sum

Formula: nAggr ~ SSlogis(CertYear, phi1, phi2, phi3)

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi1 3.407e+03 2.691e+02 12.664 0.00106 **
phi2 2.022e+03 1.774e-01 11393.552 1.49e-12 ***
phi3 8.016e-01 9.998e-02 8.017 0.00405 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 88.12 on 3 degrees of freedom
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Number of iterations to convergence: 1
Achieved convergence tolerance: 2.937e-06

byYear$fittedNL = fitted(nonlinNL)
ggplot(byYear) +
geom_col(aes(x=CertYear,y=nAggr)) +
geom_line(aes(x=CertYear, y=fittedNL), color="green") +
geom_point(aes(x=CertYear, y=fittedNL), color="green") +
ggtitle(paste(countryNames["NL"],"(2018-2023)"))
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We get very different results for the two time periods: For the first period the estimated upper
limit is 690 certified green buildings, for the second one it is 3407, almost five times as many.

When we explicitly set the parameter phi1 to the value 3407, that we got from the second
time period, and only estimate the other two parameters,the model converges, but does not fit
the observations very well. Therefore, we leave out The Netherlands from the further analysis
and hope that data from additional years and from additional certification schemas will help
resolve this problem.

byYear <- byCountryYear %>%
filter(country == "NL")

byYear$nAggr = sapply(byYear$CertYear, function(x){
sum(byYear$n[byYear$CertYear <= x])})
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nonlinNL <- nls(nAggr ~ 3407*(1/(1+exp((phi2-CertYear)/phi3))),
start = list(phi2=2024, phi3=2), data=byYear, trace=FALSE)

sum <- summary(nonlinNL)
sum

Formula: nAggr ~ 3407 * (1/(1 + exp((phi2 - CertYear)/phi3)))

Parameters:
Estimate Std. Error t value Pr(>|t|)

phi2 2020.5451 0.2586 7814.596 < 2e-16 ***
phi3 1.3585 0.2466 5.509 0.000134 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 303.5 on 12 degrees of freedom

Number of iterations to convergence: 17
Achieved convergence tolerance: 7.595e-06

byYear$fittedNL = fitted(nonlinNL)
ggplot(byYear) +
geom_col(aes(x=CertYear,y=nAggr)) +
geom_line(aes(x=CertYear, y=fittedNL), color="green") +
geom_point(aes(x=CertYear, y=fittedNL), color="green") +
ggtitle(paste(countryNames["NL"],"(parameter phi1 set to 3407)"))
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6.3 Interpreting the parameters

The estimated parameter values differ considerably between the countries. We estimate a
saturation point (parameter 𝜙1) of just 28.56 certified green buildings for Denmark, but over
8,000 for Spain and almost 16,000 for Great Britain. On the other hand, for Denmark and
Great Britain we estimate the lowest turning points (late 2015 and early 2016, respectively),
for Spain with 2024 the highest one.

parameters

country phi1 phi2 phi3
1 TOTAL 35839.79192 2018.944 2.945705
2 AT 61.56865 2017.885 3.187544
3 BE 432.14174 2019.162 3.004766
4 BG 54.72004 2017.745 2.131665
5 CH 76.03678 2018.662 2.488630
6 CZ 297.56003 2018.634 2.612407
7 DE 398.78153 2016.922 2.469876
8 DK 28.56384 2015.892 1.912345
9 ES 8014.54081 2024.341 2.105183
10 FI 454.09965 2017.796 2.574699
11 FR 3461.40816 2021.006 2.687529
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12 GB 15918.06740 2016.135 2.243569
13 GR 42.64520 2019.669 2.803938
14 HU 281.09266 2021.069 3.400984
15 IE 280.73159 2020.527 2.119614
16 IT 960.52149 2022.700 3.310613
17 LT 94.29277 2019.719 1.678673
18 LU 184.57788 2020.741 3.188375
19 LV 58.74388 2022.154 2.553400
20 NO 242.06128 2017.149 1.674614
21 PL 1974.07145 2021.407 2.874246
22 PT 55.10958 2020.732 1.868463
23 RO 279.33095 2019.863 2.422696
24 SE 443.43797 2017.427 2.440390
25 SK 85.77695 2017.777 1.937094
26 TR 207.04588 2016.586 1.997266

As we mentioned above, parameter phi1 estimates the upper limit of the logistic function. We
can interpret this as the estimated maximum number of certified green buildings. Of course,
the maximum number of green buildings in a country is strongly influenced by the size of the
country. Exactly the same growth process will yield a larger estimate for phi1 in a larger
country than in a smaller one. To make the results comparable, we divide the estimated
values of phi1 by the population of the country. In the following table we show phi1ByPop,
the value of phi1 per 100,000 inhabitants of the country. The table is in descending order of
this variable.

parameters %>%
merge(PopulationByCountryPlus, by = "country") %>%
mutate(phi1ByPop = 100000*phi1/pop) %>%
arrange(desc(phi1ByPop)) %>%
select(country, phi1, pop, phi1ByPop)

country phi1 pop phi1ByPop
1 LU 184.57788 613894 30.0667353
2 GB 15918.06740 66647112 23.8841068
3 ES 8014.54081 46918951 17.0816709
4 FI 454.09965 5517919 8.2295454
5 TOTAL 35839.79192 630663666 5.6828693
6 IE 280.73159 4940311 5.6824679
7 PL 1974.07145 37972812 5.1986444
8 FR 3461.40816 67290471 5.1439797
9 SE 443.43797 10230185 4.3346036
10 LT 94.29277 2812200 3.3529894
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11 BE 432.14174 13213979 3.2703377
12 LV 58.74388 1919968 3.0596280
13 HU 281.09266 9700272 2.8977812
14 CZ 297.56003 10649800 2.7940434
15 NO 242.06128 9951007 2.4325305
16 IT 960.52149 59816673 1.6057755
17 SK 85.77695 5450421 1.5737674
18 RO 279.33095 19414458 1.4387780
19 CH 76.03678 8544527 0.8898887
20 BG 54.72004 6664177 0.8211072
21 AT 61.56865 8858775 0.6950018
22 PT 55.10958 10333496 0.5333101
23 DK 28.56384 5806081 0.4919643
24 DE 398.78153 83019213 0.4803485
25 GR 42.64520 10724599 0.3976391
26 TR 207.04588 82003882 0.2524830

Because of its small size, Luxembourg with just 129 certified green buildings has by far the
largest value of phi1ByPop. In some countries at the end of the ranking, like Austria, Germany,
and Denmark, green building certification is dominated by the DGNB system, which is not
yet included in our analysis. With a more complete dataset, these countries will most likely
reach considerably higher values.

The slope of the function at the inflection point (𝑥 = 𝜙2) is 𝜙1
2𝜙3

. Standardized to the same
saturation level, this slope is just 1

2𝜙3
. We calculate this standardized slope for each of the

countries and store it in the column slope of the data frame parameters. In addition, we
also calculate at what year the curve reaches 10% of the saturation level. This is calculated
by 𝑥 = 𝜙2 − 𝜙3 ln( 1

𝑎 − 1) with 𝑎 = 0.1 and stored in column tens.

parameters$slope <- 1/(2*parameters$phi3)
parameters$tens <- parameters$phi2-parameters$phi3*log(9)

The parameter estimates and these indicators are shown in the following table.

parameters %>%
arrange(tens) %>%
select(country, phi3, slope, tens)

country phi3 slope tens
1 AT 3.187544 0.1568606 2010.882
2 GB 2.243569 0.2228592 2011.206
3 DE 2.469876 0.2024393 2011.496
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4 DK 1.912345 0.2614591 2011.690
5 SE 2.440390 0.2048853 2012.065
6 FI 2.574699 0.1941975 2012.138
7 TR 1.997266 0.2503422 2012.197
8 TOTAL 2.945705 0.1697386 2012.471
9 BE 3.004766 0.1664023 2012.560
10 CZ 2.612407 0.1913944 2012.894
11 BG 2.131665 0.2345584 2013.061
12 CH 2.488630 0.2009138 2013.194
13 NO 1.674614 0.2985763 2013.469
14 GR 2.803938 0.1783206 2013.508
15 SK 1.937094 0.2581186 2013.520
16 HU 3.400984 0.1470163 2013.597
17 LU 3.188375 0.1568197 2013.735
18 RO 2.422696 0.2063817 2014.539
19 PL 2.874246 0.1739587 2015.092
20 FR 2.687529 0.1860445 2015.101
21 IT 3.310613 0.1510294 2015.425
22 IE 2.119614 0.2358920 2015.869
23 LT 1.678673 0.2978544 2016.031
24 LV 2.553400 0.1958174 2016.543
25 PT 1.868463 0.2675997 2016.627
26 ES 2.105183 0.2375090 2019.716

We see clear differences between the countries in the estimation results. Our measure for the
standardized saturation level, phi1ByPop, shows that LEED and BREEAM certifications are
strong in a small number of countries. Only Luxembourg, Great Britain, Spain, and Finland
show higher standardized saturation levels than all the countries in average. The other 21
countries all show smaller values. It will be interesting to see when we use a wider set of
certification schemas.

The indicator tens shows, when a country reached 10% of its estimated saturation level.
slope shows how strongly the growth process is. The table again shows quite different growth
processes. Austria, for example, is the first country that reached the 10% mark, but also has
one of the smallest slopes. Countries like Spain, Portugal, and Lithuania, on the other hand,
reach the 10% mark much later, but have a much steeper slope.

The following scatterplot positions the countries in these two dimensions.

ggplot(parameters, aes(x=slope, y=tens)) +
geom_point() +
geom_text(label=parameters$country, nudge_x=0.005)
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7 Conclusion

As has been said in the introduction, the aim of this discussion paper is to demonstrate that
a spatio-temporal analysis of the diffusion of green building certifications in Europe is feasible.
Since we only have data for LEED and BREEAM available at this point, we have to refrain
from more substantial interpretations of the results. The analysis shows, however, that such
an analysis will most likely lead to valuable new insights. As we did show, there was a massive
growth in the number of green buildings in Europe during the observation period. This
process was not uniform, but resulted in a concentrated pattern of certified green buildings
with significant spatial clusters. More in depth analysis seems needed to clearly understand the
dynamics of this spatio-temporal process, and to identify policy instruments that can help to
stimulate a stronger and more wide spread application of green technologies in the construction
sector and in the buildings we use. Since buildings and their construction are critical elements
for the transition to more sustainability, this knowledge is of great importance, in our view.

References

Childs, Dylan Z, Bethan J Hindle, and Philip H Warren. n.d. Introductory Biostatistics with
r. https://tuos-bio-data-skills.github.io/intro-stats-book/.

91



Shi, Yingling, and Xinping Liu. 2019. “Research on the Literature of Green Building Based
on the Web of Science: A Scientometric Analysis in CiteSpace (2002–2018).” Sustainability
11 (13): 3716. https://doi.org/10.3390/su11133716.

Wang, Wei, Shoujian Zhang, Yikun Su, and Xinyang Deng. 2018. “Key Factors to Green
Building Technologies Adoption in Developing Countries: The Perspective of Chinese De-
signers.” Sustainability 10 (11): 4135. https://doi.org/10.3390/su10114135.

Session Info

sessioninfo::session_info()

- Session info ---------------------------------------------------------------
setting value
version R version 4.4.1 (2024-06-14 ucrt)
os Windows 11 x64 (build 26100)
system x86_64, mingw32
ui RTerm
language (EN)
collate English_Austria.utf8
ctype English_Austria.utf8
tz Europe/Vienna
date 2024-11-12
pandoc 3.2 @ C:/Program Files/RStudio/resources/app/bin/quarto/bin/tools/ (via rmarkdown)

- Packages -------------------------------------------------------------------
package * version date (UTC) lib source
abind 1.4-8 2024-09-12 [1] CRAN (R 4.4.1)
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.4.1)
backports 1.5.0 2024-05-23 [1] CRAN (R 4.4.0)
base64enc 0.1-3 2015-07-28 [1] CRAN (R 4.4.0)
bibtex 0.5.1 2023-01-26 [1] CRAN (R 4.4.1)
boot 1.3-30 2024-02-26 [2] CRAN (R 4.4.1)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.4.1)
class 7.3-22 2023-05-03 [2] CRAN (R 4.4.1)
classInt 0.4-10 2023-09-05 [1] CRAN (R 4.4.1)
cli 3.6.3 2024-06-21 [1] CRAN (R 4.4.1)
codetools 0.2-20 2024-03-31 [2] CRAN (R 4.4.1)
colorspace 2.1-1 2024-07-26 [1] CRAN (R 4.4.1)
countrycode 1.6.0 2024-03-22 [1] CRAN (R 4.4.1)
crosstalk 1.2.1 2023-11-23 [1] CRAN (R 4.4.1)

92



curl 5.2.3 2024-09-20 [1] CRAN (R 4.4.1)
data.table 1.16.0 2024-08-27 [1] CRAN (R 4.4.1)
DBI 1.2.3 2024-06-02 [1] CRAN (R 4.4.1)
deldir 2.0-4 2024-02-28 [1] CRAN (R 4.4.0)
dichromat 2.0-0.1 2022-05-02 [1] CRAN (R 4.4.0)
digest 0.6.37 2024-08-19 [1] CRAN (R 4.4.1)
dplyr * 1.1.4 2023-11-17 [1] CRAN (R 4.4.1)
e1071 1.7-16 2024-09-16 [1] CRAN (R 4.4.1)
eurostat * 4.0.0 2023-12-19 [1] CRAN (R 4.4.1)
evaluate 1.0.1 2024-10-10 [1] CRAN (R 4.4.1)
fansi 1.0.6 2023-12-08 [1] CRAN (R 4.4.1)
farver 2.1.2 2024-05-13 [1] CRAN (R 4.4.1)
fastmap 1.2.0 2024-05-15 [1] CRAN (R 4.4.1)
forcats * 1.0.0 2023-01-29 [1] CRAN (R 4.4.1)
gdata 3.0.1 2024-10-22 [1] CRAN (R 4.4.1)
generics 0.1.3 2022-07-05 [1] CRAN (R 4.4.1)
ggplot2 * 3.5.1 2024-04-23 [1] CRAN (R 4.4.1)
glue 1.8.0 2024-09-30 [1] CRAN (R 4.4.1)
gmodels * 2.19.1 2024-03-06 [1] CRAN (R 4.4.1)
gtable 0.3.6 2024-10-25 [1] CRAN (R 4.4.1)
gtools 3.9.5 2023-11-20 [1] CRAN (R 4.4.1)
here 1.0.1 2020-12-13 [1] CRAN (R 4.4.1)
hms 1.1.3 2023-03-21 [1] CRAN (R 4.4.1)
htmltools 0.5.8.1 2024-04-04 [1] CRAN (R 4.4.1)
htmlwidgets 1.6.4 2023-12-06 [1] CRAN (R 4.4.1)
httr 1.4.7 2023-08-15 [1] CRAN (R 4.4.1)
httr2 1.0.6 2024-11-04 [1] CRAN (R 4.4.1)
ISOweek 0.6-2 2011-09-07 [1] CRAN (R 4.4.1)
jsonlite 1.8.9 2024-09-20 [1] CRAN (R 4.4.1)
KernSmooth 2.23-24 2024-05-17 [2] CRAN (R 4.4.1)
knitr 1.48 2024-07-07 [1] CRAN (R 4.4.1)
labeling 0.4.3 2023-08-29 [1] CRAN (R 4.4.0)
lattice 0.22-6 2024-03-20 [2] CRAN (R 4.4.1)
lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.4.1)
leafem 0.2.3 2023-09-17 [1] CRAN (R 4.4.1)
leaflet 2.2.2 2024-03-26 [1] CRAN (R 4.4.1)
leafsync 0.1.0 2019-03-05 [1] CRAN (R 4.4.1)
lifecycle 1.0.4 2023-11-07 [1] CRAN (R 4.4.1)
lubridate * 1.9.3 2023-09-27 [1] CRAN (R 4.4.1)
lwgeom 0.2-14 2024-02-21 [1] CRAN (R 4.4.1)
magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.4.1)
MASS 7.3-60.2 2024-04-26 [2] CRAN (R 4.4.1)
munsell 0.5.1 2024-04-01 [1] CRAN (R 4.4.1)

93



pillar 1.9.0 2023-03-22 [1] CRAN (R 4.4.1)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.4.1)
plotly * 4.10.4 2024-01-13 [1] CRAN (R 4.4.1)
plyr 1.8.9 2023-10-02 [1] CRAN (R 4.4.1)
png 0.1-8 2022-11-29 [1] CRAN (R 4.4.0)
proxy 0.4-27 2022-06-09 [1] CRAN (R 4.4.1)
purrr * 1.0.2 2023-08-10 [1] CRAN (R 4.4.1)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.4.1)
rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.4.1)
raster 3.6-26 2023-10-14 [1] CRAN (R 4.4.1)
RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.4.0)
Rcpp 1.0.13-1 2024-11-02 [1] CRAN (R 4.4.1)
readr * 2.1.5 2024-01-10 [1] CRAN (R 4.4.1)
readxl 1.4.3 2023-07-06 [1] CRAN (R 4.4.1)
RefManageR 1.4.0 2022-09-30 [1] CRAN (R 4.4.1)
regions 0.1.8 2021-06-21 [1] CRAN (R 4.4.1)
rlang 1.1.4 2024-06-04 [1] CRAN (R 4.4.1)
rmarkdown 2.29 2024-11-04 [1] CRAN (R 4.4.1)
rprojroot 2.0.4 2023-11-05 [1] CRAN (R 4.4.1)
rstudioapi 0.17.1 2024-10-22 [1] CRAN (R 4.4.1)
s2 1.1.7 2024-07-17 [1] CRAN (R 4.4.1)
scales 1.3.0 2023-11-28 [1] CRAN (R 4.4.1)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.4.1)
sf * 1.0-18 2024-10-11 [1] CRAN (R 4.4.1)
sp 2.1-4 2024-04-30 [1] CRAN (R 4.4.1)
spData * 2.3.3 2024-09-02 [1] CRAN (R 4.4.1)
spdep * 1.3-6 2024-09-13 [1] CRAN (R 4.4.1)
stars 0.6-6 2024-07-16 [1] CRAN (R 4.4.1)
stringi 1.8.4 2024-05-06 [1] CRAN (R 4.4.0)
stringr * 1.5.1 2023-11-14 [1] CRAN (R 4.4.1)
terra 1.7-83 2024-10-14 [1] CRAN (R 4.4.1)
tibble * 3.2.1 2023-03-20 [1] CRAN (R 4.4.1)
tidyr * 1.3.1 2024-01-24 [1] CRAN (R 4.4.1)
tidyselect 1.2.1 2024-03-11 [1] CRAN (R 4.4.1)
tidyverse * 2.0.0 2023-02-22 [1] CRAN (R 4.4.1)
timechange 0.3.0 2024-01-18 [1] CRAN (R 4.4.1)
tmap * 3.3-4 2023-09-12 [1] CRAN (R 4.4.1)
tmaptools 3.1-1 2021-01-19 [1] CRAN (R 4.4.1)
tzdb 0.4.0 2023-05-12 [1] CRAN (R 4.4.1)
units 0.8-5 2023-11-28 [1] CRAN (R 4.4.1)
utf8 1.2.4 2023-10-22 [1] CRAN (R 4.4.1)
vctrs 0.6.5 2023-12-01 [1] CRAN (R 4.4.1)
viridisLite 0.4.2 2023-05-02 [1] CRAN (R 4.4.1)
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withr 3.0.2 2024-10-28 [1] CRAN (R 4.4.1)
wk 0.9.4 2024-10-11 [1] CRAN (R 4.4.1)
xfun 0.49 2024-10-31 [1] CRAN (R 4.4.1)
XML 3.99-0.17 2024-06-25 [1] CRAN (R 4.4.1)
xml2 1.3.6 2023-12-04 [1] CRAN (R 4.4.1)
yaml 2.3.10 2024-07-26 [1] CRAN (R 4.4.1)

[1] C:/Users/gmaier/AppData/Local/R/win-library/4.4
[2] C:/Program Files/R/R-4.4.1/library

------------------------------------------------------------------------------
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