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ABSTRACT  

The degree of connectivity and proximity that results from the configuration of land uses and 

associated transport networks is an important concept in much of the transportation research 

agenda. A substantial body of work has developed around the idea that compact, mixed-use 

development with multimodal transport options will shape travel behavior, increasing the use of 

transit, walking, and cycling for routine travel. Yet empirical evidence is somewhat mixed. One 

of the reasons for this uncertainty is the difficulty of defining and measuring sprawl in a 

meaningful way for use in quantitative analyses, rather than using regionally idiosyncratic or 

mono-dimensional definitions of sprawl. A recently released national dataset measuring multiple 

dimensions of urban form offers an opportunity to explore the relationship between 

transportation and sprawl.  

This study uses a series of spatial regressions to model effects on the share of a county’s 

workers who commute by driving alone. The results for income are found to be robust across 

various model specifications, confirming the well-established, positive relationship between 

income and driving to work. The results for the Street Accessibility Factor suggest 

characteristics of the street network are related to the choice to commute by driving alone, with 

more compact street networks and greater connectivity associated with reduced driving alone. 

The Land Use Mixing Factor has little power in explaining travel behavior, despite its intuitive 

appeal as the land use component of the commute mode decision.  

 

 

 

 

Keywords: Sprawl, Land use transportation interaction, Accessibility, Commute mode, Spatial 

modeling  
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INTRODUCTION 

There is a long-recognized connection between the patterns of urban development and patterns 

of human social and economic behavior across space. The degree of connectivity and proximity 

that results from the configuration of land uses and associated transport networks is an important 

concept in much of the transportation and urban studies research agenda, tracing back to the 

classic writings of von Thünen (1) and Christaller (2).  Today, interest in addressing 

environmental impacts (water quality, air pollution, and land conservation), climate change 

impacts, and socio-economic impacts (physical health, quality of life, equity) of human 

settlement patterns has sustained an interest in evaluating the land use-transportation interaction, 

frequently focusing on the differences between compact versus sprawling places. Generally, 

compact places are defined as places with high densities, mixed land uses development, and 

multimodal transportation systems that deliver a high degree of accessibility. Sprawl, on the 

other hand, is the condition of low density, segregated land uses, and an autocentric (mono-

modal) transportation system. These general concepts offer an intuitive framework for 

understanding the direct and indirect effects of particular configurations of land use and 

transportation systems, but are of little help in framing robust, quantified studies that can provide 

the kind of evidence needed for targeted projects, programs, or policies. Thus, to make 

meaningful contributions, research must continue to seek improvement in measuring and 

understanding the relationship between sprawl and outcomes that improve or erode desired 

conditions.  

This study contributes to this ongoing effort by exploring recently released measures of 

sprawl and their relationship to commuting behavior. Using national indices of urban form, it 

models the relationship between urban form characteristics and the share of workers who 

commute by driving alone.  Do greater street system connectivity and increased jobs 

accessibility reduce the share of workers who commute by driving alone? If so, is the effect 

different for workers who commute to a county that has a different level of compactness than 

their county of residence? Turning to the question of equitable effects, is the relationship 

between urban form and travel behavior different for low income workers compared with high 

income workers?   

 

LITERATURE REVIEW 

Much of the relevant sprawl literature is structured around claims that sprawl promotes 

automobile dependency through a combination of low density development and a deficit of 

functional infrastructure for other modes. In contrast, compact, dense environments are theorized 

to discourage auto use and promote the use of alternative modes for routine travel.  

In a meta-analysis of 50 quantitative studies of the relationship between urban form and 

travel published through 2009, Ewing and Cervero (3) sought generalizable patterns travel 

behavior that could be used by urban planning practitioners. Overall, they found that mode 

choice was inelastic to characteristics of urban form, although increased density, job 

accessibility, proximity to downtown, land use mixing, and street intersection density were found 

to have some effect on reducing driving, and increasing the use of active transport modes. 

Khattak and Rodriguez (4) found significant differences in mode shares in a study of a matched 

pair of neighborhoods: residents in a compact ‘New Urbanist’ neighborhood did substitute 

walking and bus modes for auto trips compared with residents in a low-density suburban 

neighborhood. Still, the evidence for the urban environment being an important determinate of 

travel behavior is mixed. In the Special Report Does the Built Environment Influence Physical 

Activity?, the Transportation Research Board summarized a wide-ranging examination of the 

evidence by noting that ‘a supportive built environment alone is not sufficient . . . . nevertheless, 
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it can play a facilitating role’ in shaping mode choice in favor of a higher use of alternative 

modes. (5, p. 159).    

As for the environmental and climate change impacts of sprawl, the high-profile report 

Growing Cooler (6) combined a review of literature with original calculations to argue for 

policies to mitigate a wide range of negative effects of sprawl, especially rising CO2 emissions. 

In addition to CO2, other studies have shown a link between sprawl and other air pollutants 

compared with compact metropolitan areas (7).  Some of this effect, however, is being mitigated 

by improvements to vehicle technologies (see, e.g. 8). Brabec et al (9) found high levels of 

impermeable surface, a feature of extensive development, negatively affects water quality by 

increasing rainwater runoff which carries more pollutants to water resources.  

Recently, a revived interest in the relationship between public health and transport has 

fueled a flurry of studies on the effects of sprawl on health. Most of these studies find a negative 

effect on health, largely explained by lower levels of physical activity—theorized to be a result 

of automobile dependency—in low-density areas (see, e.g. 10).  

Other scholars have been critical of claims of the effects of sprawl. Feng et al. (11) noted 

considerable heterogeneity in methods, especially the definitions of sprawl employed, the 

selection of geographic scale for measuring sprawl, and cross-jurisdictional differences affecting 

the quality and comparability of the underlying data. These authors assert that the sensitivity of 

models to specification changes in urban form metrics makes it difficult to draw strong 

conclusions that can inform policy or practice. Eid et al. (12) join this criticism of methods and 

lack of robustness in their longitudinal study of the relationship between sprawl and obesity. 

Using panel data from the National Longitudinal Youth Survey (NLYS) for residential location 

and Body Mass Index and controlling for changes in the urban environment after a household 

move, they found no significant relationship between weight gain and urban environment.  These 

findings strongly suggest self-selection in residential location decisions explains the superficial 

association between obesity and sprawl, adding another complication for the design of sprawl 

studies. Notably, Eid et al. (12) used very limited measures of urban form coupled with a 

geographic buffer approach that likely introduces spatial aggregation issues. Problematic and 

dramatically varied definitions of sprawl—either too simplistic or too aggregated—no doubt 

contribute to the lack of clear evidence on sprawl impacts across studies. 

Cutsinger et al. (13) make a pointed argument for improved rigor and provided a factor 

analysis of urban form components as an example of how to define a quantified definition of 

sprawl (see also 14). This work is updated by Sarzynski et al. (15) who suggest that effective 

policies to improve urban form-related quality of life must be informed by studies that account 

for the diversity of US cities and the complexity of interrelated land use, transport, demographic, 

and historical factors. Further, land development, housing, transport, and other socio-economic 

processes are addressed through different regulatory mechanisms with different policy 

frameworks. One-dimensional definitions or measures of urban form are unlikely to account for 

the complexity of these interrelationships and their effects. Thus, from a policy-making 

perspective, while aggregating various dimensions of urban form into a single metric may appeal 

to those seeking easy-to-report rankings, this approach does not provide adequate clarity to 

develop targeted, effective and implementable policies.  

Addressing some of the definitional concerns, Kelly-Schwartz et al. (16) used data from 

29 Metropolitan Statistical Areas (MSAs) to model sprawl effects on measures of physical 

health. They found no significant relationship between composite measures of sprawl. However, 

when urban form was measured using narrowly focused metrics, differential effects were seen: 

higher street network connectivity was associated with better health (as reported by survey 

respondents and physicians), which they attribute to a transport effect through higher rates of 
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walking and transit use. Density alone had a negative effect on health. Thus the effects of various 

dimensions of sprawl might have different effects from one another or from any composite 

sprawl measure.  

A few studies have considered social effects of sprawl. For example, Brueckner and 

Largey (17) tested Robert Putnam’s claim that sprawl reduces social capital and weakens social 

networks by decreasing informal interactions.  They found, however, that increased density was 

associated with less interaction among neighbors, having fewer close friends, and less frequent 

informal socializing. Using a more complex approach to defining the built environment than 

simple density, Kamrazzman et al (18) found higher levels of trust and social capital among 

residents or compact, transit-oriented developments in Australia. Whether such studies can be 

taken as clear evidence is unclear, given the disparate definitions of sprawl used.  

There is a vast literature on the determinants of commute mode choice, as well as many 

papers on the health, social, and economic impacts of sprawl; this section presents only a 

summary view.  The lack of consensus across studies suggests continued work is needed to 

disentangle the complex factors involved. Such work must highlight convergence on a robust 

and policy-relevant definition of the sprawl phenomenon, an area ripe for improvement. The 

focus of this study is to employ a recently released dataset of urban form characteristics in a 

transportation-related analysis. It offers insights into the complex relationship between land use 

and transportation, as well as observations on the suitability of this new data resource for 

transportation-related analyses.  

 

DATA 

The measures of urban form are variables developed by a research team funded by the National 

Institutes of Health, Smart Growth America, and the Ford Foundation (19). Using data dating 

largely to 2010, the researchers calculated sprawl measures for MSAs with populations of 

200,000 or more: 221 metro regions and almost 1,000 counties in the US (a few places in or 

partially in Massachusetts are not included or only have partial data because that state does not 

participate in the Local Employment Dynamics (LED) data program, source of several important 

components of the index). The result is a set of urban form variables that can be used for analysis 

at the national scale (20).  

The developers of the sprawl index drew extensively from existing research literature to 

identify elements to include in their index, and organized a wide range of measures into 

subcategories that measure different dimensions of urban form: development density, centering 

of population and jobs, land use mixing, and street accessibility. This analysis uses the latter two 

dimensions, which measure jobs accessibility and the connectivity and density of the street 

network—the measures directly related to the commute trip and to the areas of potential 

influence by transportation agencies. The documentation of the construction of the components 

notes the relationship of these two factors to travel behavior. Each dimension is constructed from 

multiple metrics:   

1. Land Use Mixing Factor (MIX):  

o job-population ratio at the block group level, weighted by the sum of jobs 

and residents as a percent of the county total; averaged for the county 

o an entropy measure of the variation in jobs by employment sector (retail, 

entertainment, health, education, personal services), weighted by the block 

group share of the county total population and employment 

o Walk Score values for Census tracts, weighted by the tract share of the 

county total population and employment 
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2. Street Accessibility Factor (STRTACC):  

o average street block size; excluding rural blocks defined as larger than one 

square mile 

o percentage street blocks that are less than one-hundredth of a square mile in 

size 

o intersection density for urban and suburban census tracts; excluding rural 

tracts with population densities of less than 100 persons per square mile 

o percentage of intersections that are 4-or-more-way; excluding rural tracts  

 

For each Factor, principal components were extracted from that Factor’s set of metrics. These 

principal components thus represent the vector that captures the greatest amount of variation in 

the dataset. The first principal component for each Factor is then used to represent that Factor. 

For the Street Accessibility Factor, the first component has an eigenvalue of 2.39 and explains 

almost 60% of the variation in the data. For the Land Use Mixing Factor, the first component has 

an eigenvalue 2.30 and explains just over 75% of the variation in the data. Each first component 

is then standardized with a mean of 100 and a standard deviation of 25. The standardized values 

are reported as the Factor scores for counties and for MSAs. Similar pre-processing was carried 

out for the other two Factors. Then, to create a composite sprawl index, the four Factors were 

summed and the summed values again standardized with a mean of 100 and a standard deviation 

of 25. Full details of the construction of the sprawl index are provided in Ewing and Hamidi 

(21).  

 The substantial amount of preprocessing involved in developing these measures has 

advantages and disadvantages. Using a principal components analysis approach is a strategy to 

reduce the number of variables involved while retaining the variation in the original data.  

However, this step can be affected by outliers in the data. The construction of the Factors also 

assumes that the metrics used are valid measures of the respective construct; unexplained 

variation is not a critical element that is being left unaccounted for and metrics are not imperfect 

proxies of the true environmental factor.  The process of standardization may yield a distribution 

that is easier to work with in quantitative settings; however, it may also unduly smooth the data 

and mask important characteristics of the data. 

 The data source for commuting and demographic variables is the American Community 

Survey (ACS) 5-year estimates for 2006-2010 for US counties (22).  This introduces potential 

temporal mismatch with the sprawl Factors, however it is unlikely that there were dramatic 

changes in urban structure at the county level over this brief period. Shorter time-frame estimates 

are provided by the ACS (1- and 3-year) which would allow a closer temporal match with the 

2010 urban form data; however, those data rely on much smaller samples and in many cases 

have very large margins of error. This is particularly a problem for modeling mode choice 

because in many places, cycling and walking are ‘rare behaviors’ and the small-sample estimates 

cannot be considered reliable (see 23). For this analysis, the need for precise temporal 

congruency was balanced against the interest in reliability across a wide range of geographies.   

 The ACS is also the source for data on the number of workers and whether their 

commute is to a job site outside their county of residence. It is important to note that income is 

included by using the number of workers in the county, categorized by income level compared 

with the federal poverty threshold (24). Rather than a raw figure for dollar income, this takes into 

account the household size and composition, adjusted to the rate of inflation. This measure of 

income is perhaps more meaningful than a simple dollar figure in that it relates income to a 

measure of household need and ‘basement level’ expenditures for household needs.  
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For the analysis, the full set of 994 counties for which sprawl data were available was 

reduced. First, counties where data limitations did not allow the calculation of all sprawl index 

components (mostly counties in Massachusetts) were removed. Second, because a valid 

representation of mode split is an important part of the analysis, counties that had unacceptable 

margins of error for ACS variables were also removed. Specifically, those counties where the 

ACS estimates for walking or cycling had margins of error that crossed zero were removed from 

the analysis set (a negative mode share is not possible). Because the analysis is inherently spatial, 

and spatial autocorrelation effects were anticipated, MSAs comprised of a single county were 

also removed. These spatial ‘islands’ can bias coefficients in spatial models.  Rather than mixing 

these single-county cases in with multi-county MSAs where interaction effects among counties 

are likely both in terms of land use and commuting behavior, it would be more appropriate to 

treat them as a different class of MSAs and model these cases separately. This left 699 counties 

in the continental US for the analysis with good representation nationwide.  

 

ANALYSIS  

This study uses a series of regressions to investigate the relationship between demographic and 

commuting variables and two index variables of urban form. The sequential models also allow 

for evaluation of the robustness of estimates across specifications. Models are estimated using 

GeoDa 1.5.37 (2014 beta release) and GeoDa Space 0.8.7, both available for download from the 

Arizona  State University’s GeoDa Center for Geospatial Analysis and Computation (25).   

A model is specified to estimate the contribution of increasing the number of workers, 

classified by income, to the overall share of workers who commute by driving alone. Two sprawl 

factors are used, along with a Gini index to measure the difference in urban form within each 

MSA. The Gini index is constructed to account for possible differences between the location of 

residence and the location of work (as well as the counties through which a worker might 

commute). A better measure would be to include the Sprawl Index values for both county of 

residence and county of employment, however ACS data are limited to providing county of 

residence along with the number of workers who commute to a county outside their county of 

residence. Commonly used to measure income inequality, the Gini index is the share of total 

income earned by each cumulative segment of the population (see 26). In this application, it 

measures the variation of the Overall Sprawl index within the group of counties in each MSA. 

The Gini index is based on the composite sprawl index and is included to capture a wide range of 

spatial characteristics of the MSA, not only of the county of residence. 

The regression takes the form:  

Variable definitions and descriptive statistics are provided in Table 1.  

  

PCTWRKRSOLO = ɑ + ẞ(MIX) + ẞ(STRTACC) + ẞ(GINI) +  ẞ(PctWrkOutC) +             

ẞ(Tot_100Pov) + ẞ(Tot100_149Pov) + ẞ(Tot150Plus) + ɛ 
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TABLE 1 Variable definitions and descriptive statistics  (N = 669) 

 

Variable Name and Description Min Max Mean Median St. Dev. 

PCTWRKRSOLO (% of workers 

for whom poverty status is 

calculated who commute by 

driving alone) 

6.93 89.04 79.56 81.12 7.53 

MIX  (Land Use Mixing Factor) 35.65 177.53 107.91 110.29 20.16 

STRTACC (Street Accessibility 

Factor) 

51.82 230.33 103.81 100.50 24.99 

GINI (Gini index calculated using 

composite sprawl index 

values for each MSA where 

100 = perfect inequality and 

0 = perfect equality)  

0.00 22.57 7.53 8.10 5.45 

 

Tot_100Pov  (# of workers with 

income below 100% of 

poverty threshold, in 100s)   

0.45 3210.51 93.43 44.00 1187.52 

Tot100_149 (# of workers with 

income from 100 – 149% of 

poverty threshold, in 100s)  

0.75 3752.92 93.08 41.79 206.57 

Tot150Plus (# of workers with 

income above 150% of 

poverty threshold, in 100s)  

35.37 36860.40 1355.84 652.47 2369.35 

PctWrkOutC (% of workers who 

commute outside their 

county of residence)  

1.50 81.80 35.33 36.90 19.06 

 

 

RESULTS  

OLS Model 

The first model estimated is an OLS model, which has an adjusted R-square of 0.374. Signs are 

generally as expected, with higher STRTACC values having a negative effect on the percent of 

workers commuting by driving alone (see Table 2). The MIX variable, however, is only very 

marginally significant (p = 0.105). By income group, adding workers earning below 100% of the 

poverty threshold reduced the overall share of workers who commute by driving alone, while 

those earning 100-149% of the poverty threshold increased PCTWRKRSOLO. This is in keeping 

with established research on the higher share of low income workers who use transit or other 

non-auto modes to commute, and lower car ownership rates for these households. The effect of 

GINI is also negative and significant.  Because GINI increases as diversity among counties in an 

MSA increases, the results indicate that metros with greater diversity in sprawl scores have 

reduced shares of commuters who drive alone to work.  This is likely capturing the effect of 

cities with very dense cores which are very different from the balance of the metro.  However, 

the share of workers who commute outside their county of residence is insignificant, which may 

simply reflect the irrelevance of county boundaries, which are political and governance units, for 

meaningfully defining commuting zones in most MSAs. It is important to note that because of 

the wide range of size of counties this variable cannot be interpreted as a distance effect.  
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TABLE 2 OLS Model Results 

 

Variable Coefficient Std. error t-Statistic Probability 

Constant  98.809 1.678 58.894 0.000 

MIX -0.0271 0.0167 -1.621 0.106 

STRTACC -0.125 0.013 -9.353 0.000 

GINI -0.168 0.055 -3.035 0.003 

Tot_100Pov -0.062 0.010 -6.220 0.000 

Tot100_149 0.047 0.017 -2.218 0.034 

Tot150Plus 0.0004 0.0003 1.092 0.275 

PctWrkOutC -0.036 0.017 -2.218 0.034 

Dep. variable: PCTWRKSOLO N = 669  Adj. R-Square = 0.374      F-statistic: 58.092 

 

Model diagnostics for the OLS model are highly significant for heteroskedasticity of 

errors (Jacque-Bera) and for spatial effects (Lagrange Mulitplier). The latter indicate the spatial 

lag method rather than a spatial error method is appropriate for addressing the spatial structure in 

the data. Shifting to a spatial lag model involves creating a spatial weight matrix and adding a 

variable to the regression (WY) to estimate the spatial dependence present in the dependent 

variable. For this model, weights for the spatial weight matrix are based on a first-order 

contiguity, with each county assigned those counties with which it shares a border as its 

neighbor(s). These weights are then normalized for each county (27; note that a second-order 

contiguity criterion made the geographic extent of the contiguous counties implausibly large for 

commuting interaction effects in Western states with large counties).  

   

 

 
 

FIGURE 1 Moran’s I scatter plot (X-axis = dependent variable; Y-axis = lagged dependent 

variable).  

 

Further information on the spatial structure in the data is seen in the Moran’s I scatter 

plot, which reveals a series of counties with ‘low-low’ values; that is, counties with low values 

for the dependent variable are located near other counties with low values (lower left quadrant,  

Figure 1). These observations are counties located in several of the most urbanized MSAs in the 

country including New York, Boston, San Francisco, and Washington DC. Treating these cases 
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as true outliers and removing them from the dataset was explored;  however, this step did not 

fully correct the pattern as another set of lower sprawl counties, frequently from the same MSAs 

as those removed,  emerged as extreme low-low observations. This suggests the data may 

contain subclasses of metro regions with meaningful differences for commute mode choice, and 

that perhaps model fit would be improved using a classification of metros rather than a pooled 

regression. 

 

Spatial Lag Model 

The spatial lag model, shows improved overall fit compared with an OLS model using the same 

variables (with the addition of  WY).  Log likelihood improves from -2138.78 to -1987.08; the 

Akaike Information Criterion (AIC) and Schwarz criterion drop by similar magnitudes.  (Spatial 

lag models yield a pseudo R-square value which cannot be compared with OLS R-square 

values.) Tests for heteroskedasticity of errors remain significant, indicating persistent issues of 

non-normality of errors. The error issue is not, however, attributable to spatial effects. The 

Moran’s I for the spatially lagged residuals for this second model are essentially zero (z-value of 

0.00104); as expected the spatially lagged dependent variable eliminated the spatial 

autocorrelation (28).  

Also as expected the spatial lag term is highly significant with a coefficient value of 

0.579, indicating that the spatial structure of the data is picked up by this variable (see Table 3 

for full model results). At the same time the GINI variable becomes insignificant; the 

contribution of this variable is captured in the spatial lag term, as it should be. The other 

geographic variable, PctWrkOutC, also becomes insignificant, suggesting the effect of inter-

county commuting is accounted for in the spatial lag term. This may be an effect of small 

counties in large metro regions, where inter-county commutes are common and the urban form 

characteristics in these core counties and the counties immediately adjacent are quite similar in 

terms of the effect on the choice to commute by driving alone. The Street Accessibility Factor 

remains highly significant, although its effect is diminished; the effect of the street system is 

partially accounted for in the spatial lag term. Still, every increment increase in this Factor is 

associated with a marginal decrease in the share of workers who commute to work by driving 

alone by nearly 0.10%. On the other hand, the Land Use Mixing Factor proves unstable; it 

becomes insignificant (p-value = 0.241).  

 

 

TABLE 3 Spatial Lag Model Results (Maximum Likelihood Estimation) 

 

Variable Coefficient Std. error z-Value Probability 

Lag_PCTWRKSOLO 0.579 0.023 25.009 0.000 

Constant 43.416 2.435 17.831 0.000 

MIX 0.014 0.012 1.172 0.241 

STRTACC -0.953 0.0099 -9.617 0.000 

GINI -0.061 0.040 -1.523 0.128 

Tot_100Pov -0.066 0.007 -9.079 0.000 

Tot100_149 0.047 0.007 7.056 0.000 

Tot150Plus 0.0008 0.0003 3.239 0.0012 

PctWrkOutC -0.014 0.012 -1.139 0.255 

Dep. variable: PCTWRKSOLO N = 669 Log likelihood: -1987.08  
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This instability is in contrast to the variables for workers by income group. The 

significance level and coefficient for the poorest workers (Tot_100Pov), and workers in the 

middle income group (Tot100_149) are consistent across the OLS and spatial lag specifications. 

The highest income group, those at 150% or more of the poverty threshold, become significant in 

the lag model with a small but positive effect on the share of workers driving alone to work. It is 

likely there is a spatial component to the distribution of higher income workers, which is better 

specified in the spatial lag model, allowing the marginal effect of increasing the number of 

workers in this income class to become apparent. Interestingly, the small coefficient signals these 

workers do not overwhelmingly choose to drive alone. Whether this is because they have more 

alternatives from which to choose as a result of the choice of residential or work locations, or 

because of some preference structure of this population, cannot be determined from these results.    

In order to identify potential improvements to the model specification, the error plots 

were explored. Many of the large and negative residual values are for highly urbanized counties, 

the same counties identified as having extreme low-low values in the Moran’s I plot (Figure 1). 

This persistent pattern suggests there may be meaningful subgroups in the data. For models of 

mode choice, these groups could perhaps be defined using transport system variables that more 

explicitly account for differences in the mode choice set for commuters in different counties and 

MSAs.  Thus the third model takes a spatial regime approach to estimate a two-stage least 

squares model with the counties grouped.  

 

Spatial Regimes Model 

While the Street Accessibility Factor focuses on characteristics associated with walkable access 

or perhaps bikability, it does not include any measures of transit. Naturally, transit availability 

will be lower in places at the low end of the scale and high only in places at the high end, where 

high density, high street connectivity, high centeredness, and high land use mixing provide a 

context more conducive to providing robust transit service that will attract commuters. Still, if 

transit is a defining characteristic of types of urban places and environments that shape commute 

mode choice, adding a categorical variable for transit may provide a meaningful separation of 

counties. This may lead to model results that better tease out the effects of the Street 

Accessibility and Land Use Mixing Factors.  

To implement this, a third model is developed with a variable indicating the presence or 

absence of heavy rail. Heavy rail transit is defined as public transit service operated over fixed 

tracking, in a dedicated right-of-way, operating equipment that can carry heavy passenger 

volumes (29). Heavy rail transit is associated with the availability of a suite of complimentary 

transit services including bus and streetcar. The availability of high-volume transit in at least part 

of the metro, along with a range of complementary/feeder services supports the idea that places 

with heavy rail transit are in some ways categorically different from non-heavy rail metros. For 

this reason, all the counties in a metro where heavy rail was operating in any county in that metro 

was included in the heavy rail group. In all, 8 metro regions had heavy rail transit in 2010; 94 

counties were located in metros where heavy rail transit operated (30).  

The advantage of the spatial regime approach is that it allows direct comparison of 

coefficient estimates across two categories of observations, which is not the case when two 

groups of observations are modeled separately. Thus it provides additional information about the 

robustness and stability of the variables used. In addition to different coefficient estimates for the 

two groups, Chow tests indicate whether estimates are significantly different, either in their 

significance level or their coefficients.   

Table 4 reports results of the spatial regime model. The global Chow test is highly 

significant, indicating a significant difference between the models for heavy-rail metros versus 
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metros without heavy rail. The effect of the Street Accessibility Factor is significantly different 

for the two categories of metros: for heavy rail metros, -0.193, for non-heavy rail metros, -0.029. 

The effect is somewhat less significant for the latter category (p-value = 0.0204).  

The results for the Land Use Mixing Factor are different for the two categories at the 0.01 

significance level. This variable is insignificant for non-heavy rail metros. For heavy rail metros, 

it is highly significant, with a positive effect on the share of workers commuting by driving 

alone. This counterintuitive result may stem from the ability of this variable to only measure 

county-level employment opportunity, without providing information to explain commuters’ 

choices to drive alone. The GINI variable remains insignificant for both categories; its effect is 

likely still captured in the sizeable coefficient for the spatial weight matrix 

(Lag_PCTWRKSOLO).  

Notably estimates for changes in the number of workers by income are largely consistent 

with the previous specifications. They are significant for both county subgroups and for all 

income categories. Comparing groups of counties, the Chow test finds a significant difference 

for workers below 100% of the poverty threshold. This difference is attributable to the difference 

in the size of the coefficients: the marginal reduction in the share of commuters who drive alone 

to work is nearly twice as large in heavy rail metros compared with the non-heavy rail group (-

0.088 and -0.047, respectively), reflecting the greater share of the lowest-income workers who 

use less costly modes for commuting. Thus, being in an MSA where heavy rail transit operates 

clearly provides more commuting options for this group.  

The differences for the other two income levels do not show a strong difference across 

groups of counties, although the coefficients do vary somewhat. Adding workers with incomes at 

100% to 149% of the poverty threshold results in a greater marginal increase in the share of all 

workers who commute by driving alone. The effect is similar for those earning 150% or more of 

the poverty threshold. Overall, the results for the income category variables are robust across the 

models.   

  Despite these differences visible across the categories of counties, the value of the 

coefficient for the spatial lag term is quite high, indicating that there is a substantial increase in 

the size of the coefficients when the spatial effect is combined with the marginal effect 

(coefficient value).  This outcome, coupled with the persistent heteroskedasticity of errors, 

suggest remaining specification problems, which could flow from nonnormal distributions or 

nonlinear relationships in the underlying data, error in the Census estimates or the sprawl 

Factors, or from any of the various issues that commonly plague models using spatial data (31).  
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TABLE 4 Results of Spatial Two-Stage Least Squares with Regimes 

 

Variable Coefficient Std. error z-Statistic Probability 

Counties in Non-Heavy Rail Metros (N = 575) 

Constant 22.963 8.258 2.7811 0.0054 

MIX 0.0073 0.014 0.527 0.598 

STRTACC -0.029 0.012 -2.319 0.0204 

GINI -0.010 0.041 -0.245 0.806 

Tot_100Pov -0.047 0.012 -3.923 0.00008 

Tot100_149 0.033 0.0104 3.201 0.0014 

Tot150Plus 0.0008 0.0004 2.199 0.0279 

PctWrkOutC 0.0124 0.01199 1.036 0.3004 

Counties in Heavy Rail Metros (N = 94) 

Constant 25.952 10.419 2.491 0.0128 

MIX 0.1043 0.035 2.970 0.00297 

STRTACC -0.1933 0.0349 -5.527 0.000 

GINI -0.044 0.108 -0.409 0.682 

Tot_100Pov -0.0879 0.0148 -5.951 0.000 

Tot100_149 0.060 0.0105 5.738 0.000 

Tot150Plus 0.00158 0.0004 3.5456 0.00039 

PctWrkOutC 0.0835 0.0439 1.9027 0.0571 

Global 

Lag_PCTWRKSOLO 0.7399 0.0959 7.719 0.000 

Dep. variable: PCTWRKSOLO  

 

Future Extensions  

There are extensions of these models that could provide further insights. First, to investigate 

possible scale mismatch issues, the analysis could be repeated at the metro scale. It may be that 

the characteristics of the metropolitan region as a whole are a better predictor of travel behavior 

choices because it better represents the spatial processes at work in commuting decisions (32). 

Second, alternatives to incorporating measures of transit service or accessibility into the analysis 

should be explored, perhaps as an additional independent variable.  This appears to have 

important implications the performance of the sprawl index Factors and certainly has important 

implications for the available choice set for commuters. Further, without explicitly including 

some measure of transit, it is impossible to know if the effects of the sprawl indices are partial 

proxies for a multi-modal transportation system. Other characteristics of interest could include 

more demographic variables such as household characteristics, vehicle ownership, and a fuller 

accounting of mode split, although such variables may introduce complex collinear relationships. 

Finally, a different spatial weight matrix could improve the model, perhaps one defining the 

extent of spatial interaction as occurring among all the units in each metro but not among metros 

(27). 

 

INTERPRETATION AND IMPLICATIONS 

The results for income are found to be robust across various model specifications. This confirms 

a general relationship between income and commuting behavior that holds across metro areas. 

The results for the Street Accessibility Factor suggest the configuration and density of the street 

network is an important environmental element in the choice to commute by driving alone, with 

more compact street networks associated with reduced driving alone. This Factor may be of 
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value in studies of the determinants of travel behavior, although in metros without heavy rail 

transit systems, it is somewhat less able to account for variation in the level of commuting by 

driving alone.  It is likely that in analyzing the relationship to travel behavior, this Factor should 

be augmented with additional measures such as transit service or transit accessibility. The results 

for the Land Use Mixing Factor indicate this variable has limited power to explaining 

commuting behavior, despite its intuitive appeal as the land use component of the commute 

mode decision process. Perhaps it is best employed in combination with the other Factors from 

the sprawl index.  

 Without question, the sprawl index provides an intriguing dataset for researchers and 

practitioners seeking insights into the relationship between transportation and urban form. The 

data open the opportunity for enriched exploratory work. However, the variation in land use 

patterns and transportation systems, coupled with the highly pre-processed nature of the data, 

suggest there are important caveats to using the sprawl indices and component Factors.  

Despite the massive effort of data compilation and processing represented in the sprawl 

index, it may or may not represent a definitive method for measuring the phenomenon of sprawl. 

It may be the case that sprawl represents a deeply complex phenomenon, perhaps with 

synergistic, nonlinear, and/or threshold effects. Such a view suggests that quantitative 

approaches that seek to isolate components so as to develop targeted interventions or policies 

face serious methodological challenges which could leave practitioners and decision makers with 

great uncertainty when confronted with sweeping arguments of advocates, whether pro- or anti-

sprawl.  
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