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Abstract 

In this paper we use the novel (at least in regional science) technique of social network 
analysis and apply it to one of the most analyzed topics in the discipline, US internal 
migration. We want to see whether social network analysis can yield any new insights into 
this well known process. We want to compare the technique to more conventional methods 
of analysis in migration. The paper presents an overview of social network analysis, defines 
key concepts and describes the main components of the technique. This discussion will also 
involve a discussion of currently available software for social network analysis. Then, we 
will apply the technique to the official data about internal migration between US states as 
published by the US bureau of the census, to see whether the technique can reproduce the 
main results of the traditional techniques and whether it can yield any new insights. 

 

1. Introduction 

In this paper we want to bring the method of social network analysis to one of the most 

fundamental topics of regional science, the analysis of migration. Our main concern is not so 

much to generate new insights into migration, but to explore, to what extent social network 

analysis (SNA) is suitable for the application to a topic like migration. In order to test the 

approach, we use migration between the 50 states and the District of Columbia in the US. The 

basic information we use in this paper is the migration table 1995-2000 as published by the 

US-census (http://www.census.gov/population/cen2000/phc-t22/tab03.xls). 

Research on internal migration is concerned with a number of issues. Cushing and Poot 

(2004) distinguish between studies that are concerned with people and studies that are 

concerned with places. “The first strand uses increasingly micro- level data, while the second 

relies mostly on aggregate data” (Cushing and Poot, 2004, p. 319). Stillwell (2005) uses a 

similar distinction between micro and macro approaches. Our paper clearly falls into the 



second category of both categorizations. It is concerned with migration as a mechanism that 

connects “places” – US states in our context – and looks only at the overall number of 

migrants that change residence between two states; and measures derived therefrom. 

Consequently, the paper does not deal with migration decisions, motives of migrants, 

socioeconomic characteristics of people or places, etc. Rather, the paper is concerned with 

migration patterns and the structure of the respective migration matrix. It follows the tradition 

of gravity type spatial interaction models, lacking, however, their intention sometimes to 

explain migration through a clearer understanding of the structure of migration. 

In the following section we will discuss the relationship between migration and networks. We 

will see that different migration tables could be used for the analysis. In section 3 we will 

describe the basic concepts of SNA and give an overview of the key methods. In section 4 we 

will apply some of these methods to internal migration between US states. The paper will 

conclude with a short summary. 

 

2. Migration and networks – basic terms and concepts 

Our analysis will be confined to internal migration between the 50 states of the US and the 

District of Columbia between 1995 and 2000. No flows of population from or to foreign 

countries will be taken into account. Internal migration only considers flows that originate and 

terminate in different US states. This information is generated such that in 2000 the 

respondents of the census are asked where they lived five years ago. When the respondent 

lives in state B at the time of the interview and reports to have lived in state A five years ago, 

this person is a migrant from state A to state B, irrespective of whether the person has resided 

in one or more other states during this five year period. Internal migration deals with the 

redistribution of a constant population. The sum of people counted at their state of residence 

in 1995 and in 2000 gives the same number. People who were born, who died, or who 

migrated to the US from abroad during this five year interval do not show up in this 

information. 

This information can be arranged in form of a matrix. The migration matrix arranges rows and 

columns named by states and in each field of the matrix shows the number of people who 

migrated – according to the above definition – between the state that labels its row and the 

one that labels its column. Thus, the migration matrix shows some form of interaction 



between the states. Since SNA focuses on the relationship between actors, it also deals with 

interaction and might therefore be suited for analyzing migration. The interactions analyzed in 

SNA are typically characterized in matrix form as well. In SNA this interaction is usually 

called a “network”. This term is meant in an abstract sense as a set of actors and the 

relationships between them. In this abstract form the term has nothing to do with social 

networks like networks of friends and relatives, which are important influencing factors for 

migration behavior. We apply the term “network” in this abstract sense, despite the fact that 

SNA can of course be applied to the analysis of such social networks and has actually been 

named after this type of application. 

The migration matrix showing the number of people who have migrated between states is the 

raw data set of our analysis. One important technical aspect in migration analysis as well as in 

SNA is the treatment of the main diagonal of the matrix. The migration matrix of the US 

census shows in its main diagonal the number of people who lived in the same state at both 

time periods. Therefore, the row and column sums show the distribution of the population in 

the matrix at the beginning and at the end of the time period. Since SNA typically ignores 

diagonal information, we set these cells to zero in all our analyses. Therefore, the row and 

column sums give the number of people migrating from and migrating to the states. If we 

denote the migration matrix with the main diagonal set to zero by M, we get the following 

relationships, where OM is the vector of out-migrants and IM is the vector of in-migrants. I is 

the unit vector, i.e., a column vector with all ones. 

,IMOM ∗=    MIIM ∗= '  

The migration matrix M represents the first case of a network that we can analyze by SNA. In 

terms of graph theory, M characterizes a values digraph, since the values in matrix elements 

Mij and Mji are typically different. The graph is valued since the values in the matrix elements 

represent more than just a relation exists or does not exist. 

One of the problems with the migration matrix M is that the states are very different in 

population size. The largest state in terms of population, California, has with 33.8 Mio almost 

seventy times the population of Wyoming (493,782), the state with the lowest population. 

This makes a comparison between the states problematic. Therefore, the migration matrix has 

been standardized in a number of ways. We can divide each element of the matrix by its 

respective row sum, such that each row in the standardized matrix adds up to the value one. 

This removes the disturbing influence of the different size origins. The elements in each row 



of this matrix show, where the migrants leaving a specific state go. They can be interpreted as 

the probability with which a migrant leaving a certain state will end up in the other states. We 

denote this matrix by mo, the migration matrix standardized to out-migration. Similarly, we 

can standardize the matrix by dividing each cell by its respective column sum, setting all the 

columns sums to one. This removes the disturbing influence of the different size destinations. 

The elements show, where the in-migrants to a certain state come from. They can be 

interpreted as the probability that a migrant ending up in a certain state comes from another 

state. We denote this matrix as mi, the migration matrix standardized to in-migration. 

Because of the different sizes of origin and destination state, the two matrices mo and mi 

usually differ. Each standardization removes one part of the problem, but not all of it. The 

matrix elements will add up to one either over the rows or the columns, but usually not over 

both dimensions at the same time. Bi-proportional adjustment is a technique that can generate 

such a matrix. It applies the two adjustment procedures repeatedly to the matrix until the 

matrix shows the desired row and column sums sufficiently well. This technique is also called 

RAS-procedure and is “one of the most popular methods for adjusting input-output, social 

accounting, and demographic matrices” (Okuyama, et al., 1998). In the migration context it 

can be applied to standardize row and column sums to identical values, usually one. This 

standardization removes the scale difference at the origin and destination side of the migration 

flows simultaneously. We denote the resulting matrix by moi, the migration matrix 

standardized simultaneously to in- and out-migration. It shows the spatial structure of the 

migration. We will use the matrices, M, and moi in section 4 of the paper. 

An alternative to bi-proportional adjustment would be the use of a saturated log- linear model. 

It allows us to split up the migration matrix into four parts: a scale factor, an origin factor, a 

destination factor, and an interaction factor. The first one captures the overall scale of the 

information. The origin effect captures the origin specific component in the migration matrix, 

the destination factor the destination specific one. The interaction effect finally contains the 

interrelation between the states net of the other three effects. So, in order to look at the spatial 

structure of the migration matrix, we would concentrate on the matrix representing the 

interaction effect. 

 



3. Social Network Analysis – a brief overview 

Social network analysis (SNA) is a technique for visualizing, describing and analyzing a 

system of relations. The main features of SNA include the analysis of empirical data, 

interactions of social actors, visualizations and mathematical models (Freeman, 2004, p. 3). 

Those characteristics have developed since the dawn of this discipline in the 1920s. The 

developments in computer hardware and software – particularly graphical computing – since 

the 1970s have enabled researchers to make significant progress. Software has been 

developed to cope with large matrices and algorithms have been designed to visualize graphs 

in an efficient way. The program UCINET that will be used in our analysis dates back to 1983 

and has been constantly improved (Freeman, 2004, p 139-140). This rise in the application of 

ICT also stimulated the application of the technique.  

SNA is solidly rooted in graph theory. Frequently, networks are displayed in the form of 

graphs with nodes representing the actors or units of investigation and links representing the 

relations between them. The nodes may represent people (in a network of friendship relations, 

for example), firms (network of innovation flows), states (trade or migration flows), journals 

or articles (citation network), etc., to give a few examples. The links in these examples may 

represent sympathy, transfers of innovation, trade flows or number of migrants, and citations. 

SNA is most developed for simple, non-directional, dichotomous networks. These networks 

represent only one relationship and show, whether a relationship exists between a given pair 

of nodes or not.  

A basic form of use of SNA is to display the network visually. Major advances have been 

made in this area in recent years due to the developments of graphical systems. The software 

places the nodes as geometrical figures on screen and characterizes the relations between 

them by lines. Shape, size, and color of nodes and relations can be adjusted to reflect 

attributes of actors or a specific relation. This visualization by itself can add a lot to the 

understanding of some relationship under investigation. Different algorithms are in use for 

locating the nodes somewhat “optimally” on screen. Criteria for optimization of graph would 

include lines of similar length, minimum number of crossing lines, angles that are not too 

small and vertexes that are not too close to the line. The purpose of those characteristics is to 

generate a graph that is easy to read, where overlap does not exist. 

SNA has developed a number of indicators to describe a network and its nodes. All these 

indicators focus on the relationships between the nodes. Simple indicators, for example, are 



the degree of nodes, i.e., the number of direct relations a node has with other nodes in the 

network. In the graphical representation of a network the degree is equal to the number of 

lines connected to the respective node. This measure can be extended to directed data. In this 

case two types of degree, indegree and outdegree, can be calculated. Those measures indicate 

how often a given node is adjacent to or adjacent from other nodes (Wasserman/Faust, 1999, 

p. 125). A normalized measure for degree exists that adjusts the results according to network 

size. The degree is divided by the maximum possible degree and is expressed as a percentage. 

This normalization procedure should only be used for binary data, since might not be 

meaningful for valued data (Borgatti et al., 2002). The density of a network is the number of 

links in a network divided by the maximum number of links possible in this network. Such 

indicators can be used to answer questions like “what is the most central node in the network” 

or “how well connected is the network”. 

An important aspect of SNA is the connectedness of a network. Two nodes are connected, 

when we can follow an uninterrupted series of links from one node to the other. This series of 

links is called a path; the number of links we need to travel is called the distance between the 

two nodes. When there are nodes in a network that are not connected, the network can be 

divided into components. A component is a part of a network where every node is connected 

to every other node, but not connected to any node outside the component. Identifying 

components is an important step in SNA. Distances between nodes in the same component are 

finite; distances between nodes in different components are infinite or undefined.  

Also within a component we can identify different forms of subgraphs through SNA. Cliques 

are particularly important subgraphs. According to the definition of Wasserman and Faust 

(1999) “a clique … is a maximal complete subgraph of three or more nodes”. Maximal 

complete means, that every actor in the clique is connected to all other actors in the clique. 

For a clique with 3 actors there are 3 links, for 4 actors 6. More generally, a clique with n 

nodes has n(n-1)/2 links. Cliques represent robust structures, since there is a great deal of 

redundancy of links. Therefore it might be useful to identify cliques to uncover the “core” 

structures of a graph. Cliques are one of the strictest forms of cohesive subgroups that can be 

identified, since the removal of a single link will result in the destruction of the clique. 

Hierarchical clustering can be used to assign actors to specific subgroups. According to the 

chosen criterion clusters can be formed following the interpretation of the researcher. In the 

case of the analysis of this paper similarity has been chosen as the appropriate criterion. 



Once subgroups are identified we can identify different roles that actors play in the network. 

According to Gould and Fernandez (1989) five roles are possible. Coordinators broker within 

their own group. Consultants indirectly link actors that belong to the same other group, but 

cannot reach each other directly. Gatekeepers have incoming relations from another group and 

outgoing relations to members of their own group. In this respect they are gatekeepers, since 

they’re the ones who may filter inflows. Representatives have the opposite role. They 

represent their own group to another group. Liaison actors broker ties where all actors are 

members of different groups. The table below shows the roles with the corresponding 

positions involved. The relevant actor is always the second one (printed in bold) 

Role Positions 
Coordinator A à A à A 
Consultant B à A à B 
Gatekeeper B à A à A 
Representative A à A à B 
Liaison B à A à C 

 

Another interesting approach to measure the connections among groups is to measure the E-I 

index. This index measures the ratio of ties within and between groups. It may range from -1 

to +1. A value of -1 indicates that there are only ties within the respective group. A value of 

+1 means that only external ties exist. A value of zero indicates a balance between internal 

and external ties. The index is calculated for individual actors and the groups. The results for 

the group can be displayed in a density matrix that can be visualized to show the ties between 

groups instead of single actors (Borgatti et al. 2002). 

 

4. Applying SNA to the analysis of migration 

In section 3 we have discussed various versions of migration matrix that could be used in the 

analysis. We will begin by analyzing the raw migration matrix M the elements Mij of which 

give the number of migrants from state i to state j. This part is mainly included because it 

shows the common knowledge of interstate migration in the US. The more detailed analysis 

will use moi, the matrix simultaneously standardized to in- and out-migration. 

 



4.1. Using the raw migration matrix 

Figure 1 shows the network generated from the raw migration matrix M. The figure 

demonstrates some of the visualization capabilities of contemporary SNA software (the figure 

is generated by NetDraw version 2.4). The width of the lines is proportional to the number of 

migrants, the size of the nodes to the absolute value of net-migration. The color of the node 

reflects whether this state is gaining (yellow) or losing (red) population because of internal 

migration. In addition to size and color we could also set the shape to the node indicator 

according to another attribute. 

We see clearly from this figure that New York and California are major sources of migration, 

and that Florida is a major destination. The largest migration flow is from New York to 

Florida with over 308,000 migrants, represented in the figure by the thick line between these 

two states. 

 



 

Figure 1: 

One conceptual problem with the application of SNA to migration also becomes apparent in 

this figure. SNA is typically applied at a much more disaggregate level than US-states, 

showing whether a relationship between two actors exists of not. In the case of interstate 

migration, the actors are states and at this level migration flows usually exist between most 

states. In the migration matrix for 1995-2000 of the 2550 cells only one, that representing 

migration from Rhode Island to North Dakota, is empty. Therefore, the density of the 

resulting network is very high (0.9996), producing a picture with too many lines to show 

some structure.  

To get more visual information, we have to reduce the density of the network. We can do this 

by selecting a threshold level and suppressing all links representing migration flows below it. 

When we lower the threshold level step by step, we can see how the network in figure 1 is 

built up from the migration links with declining importance.  



When we apply this approach to the migration matrix M, we first see two components 

growing; one on the East-coast and one on the West-coast. In the West California is the major 

source of migrants. A significant counter flow only exists with Texas. The West-coast 

component clearly has the shape of a star graph with California being the central node. On the 

East-coast, the structure of the component is slightly more complex. The Northern states 

(New York, New Jersey, Pennsylvania) are losing population due to migration, the Southern 

states (Florida, Georgia, North Carolina) are gaining. Above the threshold level, however, 

Pennsylvania and North Carolina are only receiving migration (only arrows pointing toward 

them). The component has no clear source of migration (only arrows pointing from the node) 

as New York and New Jersey exchange migrants in both directions. Although there are fewer 

states involved, the component on the East-coast has a more complex structure than the one 

on the West-coast.  



 

Figure 2: 

When we lower the threshold, the two components become connected through a migration 

flow from New York to California, then through a flow from California to Florida. This triad 

– California, Florida, New York – forms the central element that links the East-cost and the 

West-coast sub-networks together for many threshold levels while the two sub-networks 

become more differentiated. Figure 3 shows the network at a threshold level of 81,000 

migrants. 



 

Figure 3: 

At later stages Texas and Illinois add to the tissue that links East and West. Figure 4 shows 

the network at a threshold level of 71,000. Qualitatively, however, little changes. The original 

division between East- and West-coast is still clearly visible.  

It makes sense to look at the degrees of the nodes at this level. Table 1 gives the out- and in-

degrees of the states in the network formed at this level of the threshold. The most important 

sources of migration are New York and California with out-degrees of 8 and 7, respectively, 

the most important destinations are Florida and California with out-degrees of 10 and 5, 

respectively. Looking at states with more than one in- or out-going connections, we see that 

Illinois is a pure source (only outgoing connections), and North Carolina a pure sink (only 

incoming connections). The absolute difference between in- and out-degree is largest for 

Florida (with much higher in-degree) and New York (with much higher out-degree). 



Table 1: In-degrees and out-degrees 

  OutDegree InDegree   OutDegree InDegree 
AZ 1 1  NV 0 1 
CA 7 5  NJ 3 2 
CO 0 1  NY 8 1 
CT 0 1  NC 0 3 
FL 3 10  OH 1 0 
GA 1 1  OK 1 1 
IL 4 0  OR 1 2 
IN 0 1  PA 2 2 
LA 1 0  TX 3 4 
MD 1 0  VA 2 2 
MA 0 1  WA 2 2 
MI 1 0  WI 0 1 
 

 

Figure 4: 

 



4.2. Using the standardized migration matrix 

As mentioned in section 2, one of the problems with using the raw migration matrix is that the 

states differ substantially in size. To remove these size effects, we have standardized the 

migration matrix simultaneously to in- and out-migration by use of bi-proportional 

adjustment. This yields migration matrix moi. We will deal with this standardized migration 

matrix in the rest of the section. 

This standardization basically scales down those links that start or end in states with large 

numbers of in- or out-migrants. When the link is between a state with a large number of out-

migration and one with a large number of in-migration, this think will be down-scaled 

particularly strongly. We can expect this to be the case for the links between New York and 

Florida, and between New York and California, for example. Moreover, since we remove the 

scale effect on both sides, the resulting migration matrix is expected to reflect more strongly 

the spatial structure of migration. Therefore, we also generated the network of US-states 

based on adjacency. This network is shown in Figure 5. A line between two states is drawn, 

when they have a common border. Of course, Alaska and Hawaii are not connected to the 

component of the contiguous US. The only place where two lines intersect is at the four-

states-corner in the Southwest. 



 

Figure 5: 

By far the largest relationship in the standardized matrix is that from DC to Maryland with a 

value of 0.366. The values in all the other cells are smaller than 0.232. When we apply the 

same approach as above, the network starts off with a number of small components. At a 

threshold level of 0.13 we see the picture of Figure 6. The isolated nodes on the left hand side 

of the figure are those states that are not yet connected to any other state at this threshold 

level. We see that states that were very important before, like California, Florida, and Texas 

now remain isolated. On the other hand, the components (with more than one state) are 

formed from neighboring states. The larger components represent specific regions of the US: 

New England (Connecticut, Rhode Island, Massachusetts, New Hampshire, Vermont, and 

Maine), “Greater DC area” (DC, Maryland, Delaware, and Pennsylvania), “Northern Prairie” 

(Wyoming, Montana, North and South Dakota, Minnesota, and Wisconsin), and “Deep 

South” (Alabama, Mississippi, Louisiana, Tennessee). Of all the links displayed in this figure, 

only one (Delaware, DC) connects states that are not adjacent.  



 

 

Figure 6:  

When we lower the threshold level further, the components get connected and previously 

isolated states get added, all forming long chains. At the threshold level of 0.092 we get 

Figure 7. Note that Florida and Texas are still isolated. Besides the isolates (in addition to 

Florida and Texas: Alaska, Colorado, Hawaii, and Michigan), there are only three 

components remaining: Arizona, New Mexico; Missouri, Arkansas, Oklahoma, Kansas; and 

the large component including all the other states. This component forms almost a perfect line 

graph. It deviates from this structure only in New England, on the East-coast around DC and 

Pennsylvania, in the Northern Prairies and in the Northwest. The South is connected via a 

side-arm of the network. Consequently, the density of the network displayed in Figure 7 is 

very low (0.033). Most of the states have very low in- as well as out-degrees. The largest out-

degree is found for Idaho (4), the largest in-degree for South Dakota (5). In average, the states 



connected to the three components only have 1.89 connections each. Consequently, the index 

of network centralization is also very low: 4.76% for out-degree, and 6.8% for in-degree. 

 

Figure 7:  

Florida, the most important destination in the raw migration matrix is the last state to be 

connected to the network. This happens at a threshold level of 0.066. The network at this 

stage is shown in Figure 8. Note that New York, New Jersey, Delaware, and West Virginia 

are so called “cut points” in the network, nodes that if removed would disconnect the network. 

Additionally, the link between New York and New Jersey has the same property and is called 

a bridge 1. 

                                                 

1 Georgia and New Mexico and their respective links to Florida and Arizona have the same properties. Their 

removal, however, would only isolate one state in each case. 



From visual inspection we seem to see various groups of states. On the one hand the New 

England states, on the other hand the states in the West seem to be closely connected among 

each other and only weakly connected to other states. The area around New York and DC 

seems to form a group, just as the Northern Prairie states. Visual inspection, however, is not a 

very reliable method for identifying groups and in our case the picture of the network also 

depends upon the threshold value we apply. Therefore, we apply hierarchical clustering 

(Johnson, 1967) to the full moi matrix. This technique uses the average of the two sides of 

each migration relation and treats the resulting values as indicators of similarity. It then 

groups the most similar states together step by step until at the end all states are merged into 

one group. The choice one has to make when applying this method is about the number of 

groups. We have decided to use 8 groups. The clustering sequence is shown in Figure 9, our 

threshold resulting in the 8 groups is indicated by the dotted vertical line. Figure 10 shows the 

resulting regions on a map. 



 

Figure 8: 

 

Figure 9: 



 

Figure 10: 

 

Figure 11: 

It is interesting to compare this regionalization based on migration with the regions and 

divisions of the US statistics (figure 11). One division, New England, is reproduced perfectly 

from our analysis. Two more, Middle Atlantic and Pacific, fall entirely into one of our 

regions, each one with one additional state from another division (Delaware and Nevada, 

respectively). Major differences between the two regionalizations occur in the South and in 

Mountain. While the divisions tend to group the states vertically, our regionalization tends to 



group them horizontally. For example, Florida and Georgia don’t go with their northern 

neighbors as in the South Atlantic division, but with their western neighbors. Similarly, 

Colorado, New Mexico, and Arizona on the one hand, and Montana, Idaho, Wyoming, and 

Utah on the other don’t form a vertical band but match up with the neighbors to their east. 

How well does our regionalization  structure the migration matrix? Figure 12 shows the 

migration matrix moi at a threshold level of 0.05 with the colors of the nodes representing 

their regional assignment. We see that the regional boundaries are usually running through the 

less dense parts of the network and that the densely connected states are grouped together into 

one region. To further check the validity of this regionalization we compute the E-I index that 

was described in section 3. This index shows to which extent groups are connected internally 

and externally. The E-I index for the network shown in Figure 12 is -0.355, with an expected 

value of 0.758. The difference is significant at the 5% level. At the threshold level of 0.05 the 

states have significantly more ties to states within their groups than to states in other groups. 

This result also holds for six of the eight groups individually. Only the group with Illinois, 

Wisconsin, and Michigan has a positive E-I index (more external than internal ties), the group 

with New York, New Jersey, Delaware, and Pennsylvania has the same number of external 

and internal ties (E-I index: 0). This probably also results from the fact that these are the two 

smallest groups. 

Figure 12 also shows different roles the states have in this migration relation. The shape of the 

nodes indicates the main role. We distinguish the following four roles: 

• coordinator (circle) 

• representative (triangle pointing up) 

• gatekeeper (triangle pointing down) 

• gatekeeper and representative (square) 

The size of the node indicates the number of different roles the state has. 



 

Figure 12: 

This indicates the potential function of states in the US migration system. For example, NY 

and DC link their respective groups with NY representing its group and DC keeping gate. IL 

and IN, on the other hand play both roles in the mutual relationship between their groups. One 

would need to look at these states and their migration relations more carefully and in more 

detail to find out whether these functions are of significance.  

 

5. Summary and conclusions   

In this paper we applied Social Network Analysis methods to US internal migration at the 

state level. In section 2 of the paper we discuss the relationship between migration and 

network analysis. One obvious problem in this is the fact that migration at this aggregate level 

typically produces almost complete graphs. Consequently, one needs to apply some 

techniques to filter out the most important or most relevant migration relations. A more 

technical problem results from the fact that migration is a directed relationship. This implies 



that we mainly have to rely on directed networks, a type for which some indicators are less 

developed than for undirected networks. As discussed in section 2, raw migration data are 

strongly dominated by the size of the states. States with large population will generate more 

out-migration as well as in-migration. Consequently, the flows between a few large states may 

strongly dominate the migration matrix. Therefore, we suggest to standardize the migration 

matrix by use of bi-proportional adjustment. This is discussed in more detail in section 2 of 

the paper. 

Section 3 gives a brief overview of Social Network Analysis. We discuss some basic 

characteristics of networks and indicators for measuring them. Particular emphasis is given to 

groupings of network nodes into subgroups. Also, measures for checking the quality of 

groupings are discussed.  

In section 4 we apply the SNA techniques to the US migration matrix. In section 4.1 we use 

the raw migration matrix, in section 4.2 its standardized version. The analysis based on the 

raw data generates the expected results. We see the dominant role of big states and strong sub-

networks on either coast, which is linked through some large interior states at a lower 

threshold level. When we use the standardized matrix, the distance dependence of migration 

becomes dominant. Florida, the most important destination for migration in the raw data, 

almost becomes irrelevant in the standardized migration relations. Depending on the threshold 

level we see sub-groups of (typically adjacent) states forming which later link up to a long 

chain. At a threshold level where all states are connected, the network shows some clear 

tendency of clustering. We generate eight “regions” from the migration matrix which turn out 

to be contiguous and resemble some of the standard divisions of the US quite well, while in 

some cases the states are grouped differently. These “regions” turn out to significantly more 

connected internally than externally and we can also identify some specific roles of some 

states. 

Our analysis is a first attempt to apply Social Network Analysis to migration, one of the 

classical topics of Regional Science. Neither have we used SNA to its full potential nor have 

we checked all the options the migration data offer. Therefore, we cannot draw a final 

conclusion yet. The analys is so far, however, indicates to us that Social Network Analysis can 

be applied to the analysis of migration and can generate some new insights. Some of the tools 

and techniques need to be explored more thoroughly in this context. Also, their possible 

relationship to more conventional tools of migration analysis need to be studied more 

carefully. The use migration data based on smaller spatial units or on shorter intervals (e.g., 



annual data) may reduce the need for the application of a threshold, since it may yield more 

sparse matrices.  
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